
Part C Computer Science Project Report

The Mondrian Process in Machine Learning

Author:
Matej Balog
Merton College
University of Oxford

Supervisor:
Professor Yee Whye Teh
Department of Statistics

University of Oxford

June 20, 2015



Abstract

This report is concerned with the Mondrian process [1] and its applications
in machine learning. The Mondrian process is a guillotine-partition-valued
stochastic process that possesses an elegant self-consistency property. The
first part of the report uses simple concepts from applied probability to
define the Mondrian process and explore its properties.
The Mondrian process has been used as the main building block of a clever
online random forest classification algorithm that turns out to be equiv-
alent to its batch counterpart. [2] We outline a slight adaptation of this
algorithm to regression, as the remainder of the report uses regression as
a case study of how Mondrian processes can be utilized in machine learn-
ing. In particular, the Mondrian process will be used to construct a fast
approximation to the computationally expensive kernel ridge regression
problem with a Laplace kernel.
The complexity of random guillotine partitions generated by a Mondrian
process and hence the complexity of the resulting regression models is
controlled by a lifetime hyperparameter. It turns out that these models
can be efficiently trained and evaluated for all lifetimes in a given range
at once, without needing to retrain them from scratch for each lifetime
value. This leads to an efficient procedure for determining the right model
complexity for a dataset at hand.
The limitation of having a single lifetime hyperparameter will motivate
the final Mondrian grid model, in which each input dimension is endowed
with its own lifetime parameter. In this model we preserve the property
that its hyperparameters can be tweaked without needing to retrain the
modified model from scratch.
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Preliminaries

0.1 Notation

Capital letters are used for counts: N stands for a number of data points and D for the dimensionality
of the input space. When we consider Mondrian forests, M will denote the number of Mondrian trees in
the forest. In later chapters we will compute a randomized feature space and we will use C to denote the
number of its dimensions (number of features). Whenever possible, we will use matching lowercase letters
as indices over corresponding ranges, i.e., we will use n to index datapoints, d to index input dimensions,
m to index Mondrian trees and c to index random feature space dimensions.

Matrices and vectors are typeset in boldface (e.g., A, θ) with the only exception of feature vectors.
Throughout this report X ∈ RN×D stands for a data matrix (also called the design matrix ) whose n-th
row xTn ∈ RD is the feature vector of the n-th data point (in input space). The (n, d)-entry xnd of this
matrix is the value of feature d for datapoint n. Once we use a function z to map input data points into
a randomized feature space, we will have a feature matrix Z ∈ RN×C whose n-th row zTn ∈ RC is the
feature vector of the n-th data point in the new C-dimensional feature space.

By ei we will denote the i-th standard basis vector, i.e. a binary vector with a single 1 entry in
position i. The dimensionality of this vector will be clear from context. The identity matrix of dimension
k × k will be written Ik.

The indicator function I(P ), takes value 1 when the predicate P is true and the value 0 otherwise.

0.2 Mathematical preliminaries

In this section we recall basic mathematical concepts from applied probability that we would like to use
throughout the report without repeated elaboration.

Probability distributions

Definition 0.1. The exponential distribution with rate λ > 0, written Exp(λ), is the continuous
probability distribution on R with probability density function p(x|λ) = λe−λxI(x ≥ 0).

Recall that the rate λ of an exponential random variable is inversely proportional to its mean 1
λ (see

Proposition A.1), meaning that variables with large rate will tend to take smaller values, and vice versa.

Definition 0.2. For D ≥ 1, the D-dimensional (non-degenerate) Gaussian (or Normal) distribution
with mean µ ∈ RD and (positive definite) covariance Σ ∈ RD×D has density

N (x|µ,Σ) =
1

(2π)
D
2 |Σ| 12

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where |Σ| is the determinant of Σ. In the case D = 1 we have Σ = |Σ| = σ2 ≥ 0 and we call this the
variance; its inverse p := σ−2 is then called the precision.

Lack of memory and competing exponential clocks

The exponential distribution plays a major role in the construction of the Mondrian process. This is
because of its lack of memory property and the related concept of competing exponential clocks, which
lead to elegant properties of the Mondrian process.

Lemma 0.3 (Simple lack of memory property). Let Z ∼ Exp(λ). Then

∀t ≥ 0 ((Z − t) | (Z > t)) ∼ Exp(λ)

In words, the residual lifetime Z − t given survival {Z > t} is again Exp(λ) distributed.

Proof. The more general Lemma 0.4 below is proved as Lemma A.3 in the appendix.
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It is interesting to note that the exponential distribution is the unique probability distribution sup-
ported on the positive reals with this property (see Proposition A.2 in the appendix). It turns out that
the lack of memory property of the exponential distribution also holds at a random time, provided that
it is independent of the exponential random variable considered.

Lemma 0.4 (Lack of memory property). Let Z be an exponential random variable and T an independent
nonnegative random variable. Then Z has the lack of memory property at the random time T , i.e.

∀u ≥ 0 P(Z − T > u|Z > T ) = P(Z > u)

Proof. Proof appears as Lemma A.3 in the appendix.

Definition 0.5. A set ofN competing exponential clocks is a collection ofN independent exponential
random variables Z1, . . . , ZN with respective rates λ1, . . . , λN > 0.

We can think of these N random variables as clocks, all started at the same time 0, and each having
an independent and exponentially distributed residual time until ringing. Natural questions to asks are:
when will the first of the N clocks ring and which clock is it going to be? Once the first clock rings, what
is the joint distribution of residual times of the remaining N − 1 clocks? The lack of memory property of
the exponential distribution leads to simple answers, entailed in the following theorem.

Theorem 0.6 (Competing exponential clocks). Say Z1, . . . , ZN are N competing exponential clocks with
respective rates λ1, . . . , λN . Then
• the time until any of the clocks rings has Exp(

∑
n λn) distribution,

• the probability that the n-th clock is the first one to ring is λn∑
k λk

,

• conditionally given the time and identity of the first clock to ring, the remaining N−1 clocks remain
independent and each has preserved its original Exp(λn) residual time distribution.

Proof. Partial proofs are given in Appendix A.

Statistical parameter estimation

Say we have a probabilistic model parametrized by θ. The likelihood L(θ|D) is the probability p(D|θ)
of observed data D under this model as a function of the parameters θ. The maximum likelihood estimate
(MLE) of the parameters is

θMLE := argmax
θ

p(D|θ)

Suppose that before observing any data, we also have a prior belief about the value of the parameters θ,
encoded as a prior probability distribution p(θ). Then the maximum a posteriori (MAP) estimate of θ
is the set of parameters that maximizes the posterior distribution p(θ|D):

θMAP := argmax
θ

p(θ|D) = argmax
θ

p(D|θ)p(θ)

p(D)
= argmax

θ
p(D|θ)p(θ)

We say that a prior is conjugate for a likelihood, if the resulting posterior is a probability distribution
from the same parametric family as the prior.

Example 0.7. Suppose we want to model data y ∈ R with a Gaussian likelihood p(y|µ) = N (y|µ, σ2
noise)

where σ2
noise is fixed and the mean µ is unknown. Say we place a prior distribution p(µ) = N (µ|µprior, σ

2
prior)

on µ to express our belief that µ is not far from µprior. Then the prior is conjugate to the likelihood and
the posterior distribution is again Gaussian. More concretely, if we gather N independent observations
D = {y1, . . . , yn} then the posterior distribution of µ is

p(µ|D) = N

(
µ |

ppriorµprior + pnoise

∑N
n=1 yn

pprior +Npnoise
, (pprior +Npnoise)−1

)

where pprior = σ−2
prior and pnoise = σ−2

noise are the prior and noise precisions (inverse variances), respectively.

Proof. Appears as Proposition A.6 in the appendix.



Mondrian process

In this chapter we define the Mondrian process [1] as a temporal stochastic process taking values in
guillotine partitions of an axis-aligned box and then attempt to give intuitive explanations for some of
its elegant properties. Let us start by agreeing on terminology.

Definition 1.1. A temporal stochastic process taking values in a space S is a collection (Mt)t≥0 of
S-valued random variables, indexed by a parameter t ∈ [0,∞) that we think of as time.

Definition 1.2. An (axis-aligned) box Θ in RD is a set of the form Θ = Θ1 × · · · ×ΘD ⊆ RD, where
each Θd is a bounded interval [ad, bd]. We only work with axis-aligned boxes in this report, so we drop
the ”axis-aligned” qualification henceforth.

Definition 1.3. The linear dimension of a box Θ = [a1, b1]× · · · × [aD, bD] in RD, written LD(Θ), is

the sum of its D dimensions, i.e., LD(Θ) :=
∑D
d=1(bd − ad).

Definition 1.4. Given a box Θ in RD, a guillotine partition of Θ is a hierarchical partition of Θ
obtained by recursively splitting boxes of the partition by some hyperplane orthogonal to one of the D
coordinate axes.

Guillotine partitions can be thought of as k-d trees, where each node corresponds to a box in RD and
each non-leaf node n has exactly two children, corresponding to the two boxes obtained after cutting the
box associated with n by a hyperplane that is orthogonal to one of the D coordinate axes.

Mondrian process definition

In this subsection we define the Mondrian process over a box Θ = [a1, b1]× · · · × [aD, bD] as a temporal
stochastic process taking values in guillotine partitions of Θ. An intuitive way of thinking about the
process is that it starts out at time t = 0 with the trivial partition of Θ (containing no cuts) and as time
progresses, new cuts start to randomly appear, hierarchically splitting Θ into more refined partitions.
The precise distribution that governs how the cuts appear is given by this recursive generative process:

1: procedure Mondrian(Θ)
2: return Mondrian-Started-At(Θ, 0)

1: procedure Mondrian-Started-At(Θ, t0) . Θ = [a1, b1]× · · · × [aD, bD]
2: T ∼ Exp(LD(Θ)) . time until first cut appears
3: d ∼ Discrete(p1, . . . , pD) where pd ∝ (bd − ad) . dimension of that cut
4: x ∼ U([ad, bd]) . location of that cut
5: M< ← Mondrian-Started-At(Θ<, t0 + T ) where Θ< = {z ∈ Θ | zd ≤ x}
6: M> ← Mondrian-Started-At(Θ>, t0 + T ) where Θ> = {z ∈ Θ | zd ≥ x}
7: return (t0, t0 + T, d, x,M<,M>)

The recursive procedure Mondrian-Started-At(Θ, t0) generates a Mondrian process on the box Θ,
started at time t0. Let us analyze this procedure line by line:
• Line 2 generates the time it takes for the first cut in Θ to appear. The distribution is exponential

with rate the linear dimension of Θ. Note that by Proposition A.1, in larger boxes a cut is expected
sooner than in smaller ones. The absolute time t0 +T of the generated cut is called its birth time.

• Lines 3 and 4 generate the dimension d and location x of the first cut, respectively. The former
is generated proportionally to the dimensions of Θ and the latter is then chosen uniformly. The
cutting hyperplane is orthogonal to the d-th coordinate axis and crosses it at the point x. Thus the
cutting hyperplane ”lives” in the d-th dimension.

• Lines 5 and 6 recursively generate independent Mondrians M<, M> on the two boxes Θ<, Θ>

obtained by cutting Θ at x in dimension d. The start time of these Mondrians equals the birth
time of the cut that gave rise to Θ< and Θ>. Note that the spaces Θ<, Θ> are indeed still boxes
in RD, so the recursive calls are valid.

• Line 7 returns a node of the k-d tree representing the hierarchical partition. The node is a 6-tuple
of the form (tb, tc, d, x,M

<,M>), where the entries represent respectively the birth time, the cut
time, the cut dimension, the cut location and the two children of the node. Note that the cut time
of a node equals the birth time of the cut that splits it.
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Remark. Several remarks about this generative process are in order:
• Lines 3-4 can be informally summarized as sampling the cut uniformly from the linear dimension.
• The distributions Exp(LD(Θ)) and Discrete(p1, . . . , pD) (where pd ∝ (bd − ad)) are well-defined

provided that the linear dimension of Θ is positive. If we start with a box Θ of positive dimension,
then with probability 1 the cut location x is sampled in an interior point of [ad, bd] and then both
Θ< and Θ> also have positive linear dimension.

• We are somewhat sloppy about the generated partition as the cutting hyperplane is included in both
Θ< and Θ>. This informality can be excused since any specific point of interest has probability 0
of being hit by a cut (the cut location x is generated from a continuous distribution). In particular,
with probability 1 no cut will appear in the same location where a cut has already been made.

This generative process translates into the definition of a temporal stochastic process as follows.

Definition 1.5. Let Θ be a box in RD with positive linear dimension. The Mondrian process on Θ,
denoted as MP(Θ), is a temporal stochastic process (Mt)t≥0 taking values in guillotine partitions of Θ
and its distribution is specified by the generative process Mondrian(Θ): the random variable Mt is the
guillotine partition of Θ formed by cuts/nodes with birth time tb ≤ t.

In other words, Mt is the partition generated by Mondrian(Θ) with all cuts/nodes born after time
t ignored. In fact, we can generate the random variable Mt precisely by running the recursive process
Mondrian(Θ) and terminating any recursive call that generates a cut with time t0 +T > t. (This is the
way the Mondrian process has first been introduced in [1].)

Definition 1.6. Let Θ be a box in RD with positive linear dimension and let t ≥ 0. The Mondrian
process on Θ with lifetime t, denoted as MP(t,Θ), is the law of Mt where M ∼ MP(Θ).

For fixed t ≥ 0, MP(t,Θ) is simply a probability distribution over guillotine partitions of Θ. Note
that existing cuts are never removed from a Mondrian process M , so it exhibits the following kind of
monotonicity property:

0 ≤ t1 ≤ t2 ⇒ the partition Mt2 is a refinement of the partition Mt1

Therefore in the family of probability distributions (MP(t,Θ))t≥0 over guillotine partitions of Θ, the
lifetime parameter t can be thought of as controlling the complexity of the resulting partition. The
generative process of the Mondrian chooses cut locations uniformly at random, so it is in the way the
times of the cuts are generated where the ingenuity of the Mondrian process construction lies. The
resulting elegant mathematical properties, which we explore in subsequent sections, follow from the
memoryless property of the exponential distribution and the related concept of competing exponential
clocks (Theorem 0.6).

Example 1.7. Say we sample from a Mondrian process M on a 2D
box Θ = [0, 1]× [0, 1] with a lifetime cut-off at t = 1.5. The figure on
the right shows the obtained cuts, together with their birth times.
The process starts at time t = 0 with M0 the trivial partition of Θ.
The first cut appears after time T ∼ Exp(λ) where λ = 1 + 1 = 2 is
the linear dimension of [0, 1]× [0, 1]. At time T the first cut appears
at a location chosen uniformly from the linear dimension of Θ. More
precisely, first the dimension d of the cut is chosen with probabilities
proportional to the lengths of Θ in each dimension. In our case
Θ has length 1 in both dimensions, so the cutting dimension d is
chosen with equal probability 1

2 from {1, 2}. After the dimension
d is generated, a point x in [0, 1] is chosen uniformly at random.
The cut is then determined by the hyperplane (in our case, a line)
lying entirely in dimension d and containing the point x on the d-th
coordinate axis.

0 1
0

1

0.23

0.80

0.84
1.44

1.33

0.46

0.86

For the sample shown in the figure we generated T ≈ 0.23, d = 1 and x ≈ 0.71. For all t ∈ [0, T ),
Mt remains the trivial partition of Θ. The cut made at time T partitions the box Θ into two sub-boxes
Θ< = [0, x]× [0, 1] and Θ> = [x, 1]× [0, 1]. In each of these two sub-boxes the Mondrian process continues
to run independently and afresh, started at time T .
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1.1 Mondrian process in 1D

As a first illustration of how the choice of exponential distribution yields elegant properties of the Mon-
drian process, we consider the one-dimensional case, where it turns out that the cut locations follow a
Poisson point process. The following definition of a Poisson point process is adapted from [4].

Definition 1.8. Let λ ≥ 0. A random countable subset Π of R is a Poisson point process with
(constant) intensity λ, if, for all A ∈ B(R), the random variables N(A) := |Π ∩A| satisfy:

(i) N(A) ∼ Poisson(λm(A)), where m(A) ∈ [0,∞] is the Lebesgue measure of A, and
(ii) if A1, . . . , An are disjoint sets in B(R) then N(A1), . . . , N(An) are independent random variables.

Here B(R) is the Borel σ-algebra on R. Also, we allow a Poisson distribution with infinite rate, in which
case N(A) =∞ almost surely.

Suppose we run a Mondrian process M on a one-dimensional axis-aligned box Θ with positive linear
dimension, which is simply an interval Θ = [a, b] with a < b. Up to a finite lifetime λ, the process
generates a hierarchical partition of [a, b], with each cut having a birth time tb ∈ [0, λ]. Let us now only
consider the marginal distribution of the cut locations (marginalizing out their hierarchy and times). This
is a distribution over subsets of [a, b] and in the following lemma we give a simple representation for it.

Lemma 1.9. Let a < b and λ ≥ 0. The distribution of the cut locations {Xn} of a Mondrian process M
run on [a, b] with a finite lifetime λ can be represented by the following two-stage generative process:

N ∼ Poisson(λ(b− a))

X1, . . . , XN | N
i.i.d.∼ U([a, b])

In words, the number of cuts is Poisson distributed with rate λ(b − a) and the location of each cut is
independent and uniformly distributed in the interval.

Proof. Fix a time instant t ∈ [0, λ] and suppose we are conditionally given the evolution of the process
M up to time t. Let K − 1 be the number of generated cuts, so that the interval [a, b] is partitioned into
K segments of the form [x0, x1], [x1, x2], . . . , [xK−1, xK ] with a = x0 < x1 < · · · < xK = b. The time
until the next cut appears in a segment [xk, xk−1] has by memorylessness (Lemma 0.4) Exp(xk − xk−1)
distribution and is independent of all the other segments by construction of the Mondrian process.

Thus we are in the setting of K competing exponential clocks and the residual time until the next cut
in [a, b] appears has exponential distribution with rate

∑K
i=1(xk − xk−1) = xK − x0 = b − a. Also, the

probability of this cut occurring in a particular segment [xk, xk−1] is proportional to its length (xk−xk−1).
Within the chosen segment the location of the cut is generated uniformly, so marginally the location of
the next cut in [a, b] is uniformly in [a, b].

Thus we’ve shown that at any time instant t, given the past evolution of the process, the residual
time until the next cut appears is Exp(b− a) distributed and its location is chosen uniformly from [a, b].
As these distributions do not depend on the past evolution, the residual time until the next cut and its
location are both independent of this past evolution. The times of the cuts form a temporal Poisson
process with rate b−a, so their number in a time interval of length λ is Poisson(λ(b−a)) distributed.

timex0 = a

x5 = b

x3

x1

x2

x4

∼ Exp(x1 − x0)

∼ Exp(x2 − x1)

∼ Exp(x3 − x2)

∼ Exp(x4 − x3)

∼ Exp(x5 − x4)

t λ

Figure 1.1: An illustration of the proof of Lemma 1.9. Here K = 5.
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Theorem 1.10. Let a < b and λ ≥ 0. The distribution of the cut locations of a Mondrian process M
run on [a, b] with a finite lifetime λ is a Poisson point process with constant intensity λ.

Proof. It suffices to show that a Poisson point process with constant intensity λ can be generated using
the two-stage generative process of Lemma 1.9. The number of points N generated by a Poisson point
process with constant intensity λ on [a, b] has Poisson(λ(b − a)) distribution by definition, matching
the first stage of the generative process. Conditionally given that the Poisson point process generated
N = n points, their locations are independent and uniformly distributed, matching the second stage of
the generative process. (A proof of the last statement is given as Lemma A.7 in the appendix.) As the
cut locations of a 1D Mondrian process and of a Poisson point process can be sampled using the same
procedure, their distributions must coincide.

1.2 Self-consistency of the Mondrian process

Θ1

Θ2

Φ1

Φ2

This section is concerned with the following natural question: if
we run a Mondrian process on a larger box but only look at what
happens in a smaller subbox, what distribution of random partitions
of the subbox do we obtain? More formally, consider the setup

M ∼ MP(Θ1 × · · · ×ΘD)

Φ1 × · · · × ΦD ⊆ Θ1 × · · · ×ΘD

i.e., we run a Mondrian process M on an a box Θ := Θ1 × · · · ×ΘD

and consider some smaller box Φ := Φ1×· · ·×ΦD contained within it.
Some cuts of M will cross Φ and thus induce a guillotine-partition-
valued stochastic process on Φ. The Mondrian process was conceived
precisely so that the distribution of this stochastic process is again a
Mondrian process [3]. Here we give an intuitive argument for where this self-consistency property comes
from. The choice of the exponential distribution for the times of the cuts turns out to be crucial, as is
the notion of competing exponential clocks.

Theorem 1.11 (Self-consistency of Mondrian process). The law of the restriction of M ∼ MP(Θ) to a
smaller box Φ ⊆ Θ is again a Mondrian process.

Θ1

Θ2

Φ1

Φ2

Figure 1.2: Representing the first
cut distribution using two compet-
ing exponential clocks.

We provide intuition for the case D = 2, but the ideas generalize
to any number of dimensions. To argue that the resulting distribu-
tion on Φ is a Mondrian process, we show that the Mondrian process
M running on Θ generates cuts in Φ in the same way as a Mondrian
process running directly on Φ would.

The first cut in M occurs at time T ∼ Exp(LD(Θ)) and its
location is uniformly distributed along the linear dimension of Θ.
Employing the notion of competing exponential clocks ”backwards”,
we can represent this distribution of time and location of the first
cut using two competing clocks:

(1) Clock C1 with rate λ1 = LD(Φ). If this clock wins, the loca-
tion of the cut is sampled uniformly from the locations where
making a cut splits Φ (green segments in Figure 1.2).

(2) Clock C2 with rate λ2 = LD(Θ) − LD(Φ). If this clock wins,
the cut location is sampled uniformly form the locations where
making a cut doesn’t split Φ (red segments in Figure 1.2).

Indeed, under this representation the time until the first cut is ex-
ponentially distributed with the correct rate λ1 + λ2 = LD(Θ) and
the cut location is sampled uniformly from the linear dimension of Θ since the probability that clock C1

wins is proportional to λ1 = LD(Φ).
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Note that clock C1 represents the same distribution of the first cut as a Mondrian process running
directly on Φ would. Of course, it may happen that instead clock C2 wins, and a cut is made outside
of Φ, as illustrated in Figure 1.3 below. But observe that when such a cut is made, the measure of the
locations where a cut splitting Φ can be made (the green segments) remains to be LD(Φ). Therefore
instead of considering two new competing exponential clocks C ′1, C

′
2 as above, for C ′1 we can reuse the

clock C1 that continues to run as an independent exponential clock of rate λ1 = LD(Φ) by Theorem 0.6.

Θ1

placeholder

Θ2

Φ1

Φ2

Figure 1.3: Cut outside Φ.

Φ<1

Φ>1Φ>2

Φ<2

Θ<
1

Θ<
2

Θ>
1

Θ>
2

Figure 1.4: Cut inside Φ.

Hence, cuts made outside of Φ do not affect the distribution of the first cut within Φ, and this
distribution is the same as if a Mondrian process was running on Φ directly. Now consider the situation
when finally a cut is made within Φ, as illustrated in Figure 1.4. By definition of the Mondrian process,
the processes on the two sides Θ<, Θ> of this cut continue to run independently, and therefore their
restrictions to Φ are also independent. Thus our argument proceeds by induction, confirming that the
generative process for the cuts within Φ induced by the Mondrian process M run on Θ is the same as of
a Mondrian process running directly on Φ.

Example 1.12 (Mondrian slices). An interesting special case of self-consistency is pointed out in [1].
Suppose that Φ = Φ1 × · · · × ΦD lives in lower dimension than Θ, for example Φ1 = {x} for some
x ∈ Θ1. As the probability of making a cut precisely at the point x is zero by continuity of the uniform
distribution, a.s. all cuts of Θ splitting Φ live in the remaining dimensions d 6= 1. Therefore the restriction
of M ∼ MP(Θ) to Φ can be viewed as a (d− 1)-dimensional Mondrian process run on Φ2 × · · · × ΦD.

This observation provides some insight into how partitions generated by a Mondrian process look like.
Along any axis-parallel line, the locations of the cuts crossing it follow the distribution of a 1D Mondrian
process, which has been shown to coincide with a Poisson point process.

An important corollary of self-consistency is that it provides the Mondrian process with the projec-
tivity property required for extending its definition form bounded boxes to the entire RD.

Definition 1.13. The Mondrian process on RD with lifetime λ ≥ 0, written MP(λ,RD), is the tem-
poral stochastic process taking values in (infinite) partitions of RD with the property that its restriction
to any bounded box Θ has the law MP(λ,Θ), as defined earlier.
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1.3 Conditional Mondrians

Conditional Mondrians are a dual notion to consistency. Similarly as before, we have the setup

M ∼ MP(λ,Θ1 × · · · ×ΘD) λ ∈ [0,∞]

Φ := Φ1 × · · · × ΦD ⊆ Θ1 × · · · ×ΘD

but this time we are conditionally given the restriction MΦ = mΦ of M to the smaller box Φ. (Both the
locations and times of cuts in Φ are given.) The question we want to approach is, what is the conditional
distribution M | (MΦ = mΦ) and can we sample from it?

The answer is positive and provides a way of extending an existing sample MΦ ∼ MP(λ,Φ) on Φ to
a sample M on the larger domain Θ in such a way that the extended sample has the correct marginal
distribution M ∼ MP(λ,Θ). This is because by self-consistency MP(λ,Φ) can be interpreted both as a
Mondrian process running on Φ or as the restriction to Φ of a Mondrian process running on Θ.

Theorem 1.14. Suppose we are conditionally given the restriction MΦ = mΦ of a Mondrian process
M ∼ MP(Θ) to a smaller box Φ ⊆ Θ. Let CΦ be the first cut in MΦ and let tΦ be its time. Then
• with probability exp(tΦ(LD(Θ)−LD(Φ)), the cut CΦ is the first cut in Θ (it extends throughout Θ)
• with complementary probability 1 − exp(tΦ(LD(Θ) − LD(Φ)) the first cut in Θ misses Φ, its time

has the truncated exponential distribution with rate LD(Θ)− LD(Φ) and truncation at tΦ, and the
cut location is uniformly distributed along the segments where making a cut doesn’t hit Φ.

Θ1

Θ2

Φ1

Φ2

CΦ

Figure 1.5: Conditional Mondri-
ans. CΦ is the first cut in Φ.

Again we only provide an intuition for this result. A calculation
using the self-consistency property for the case where mΦ is the
trivial partition of Φ can be found as Lemma A.8 in the appendix.

Observe that the stated probability of CΦ being the first cut in
Θ is the likelihood of an exponential clock with rate LD(Θ)−LD(Φ)
not to ring at least until time tΦ.

Once again we represent the unconditional distribution of the
first cut in Θ by two competing exponential clocks C1, C2 as in the
section on self-consistency. Recall that clock C1 has rate λ1 = LD(Φ)
and is associated with the green segments, where making a cut splits
Φ. Clock C2 has rate λ2 = LD(Θ) − LD(Φ) and is associated with
the red segments where making a cut misses Φ. Our conditioning
on MΦ = mΦ tells us that clock C1 rang at time tΦ, and the two
cases in the statement of the theorem correspond respectively to the
situation where it was the first and where it was the second clock to
ring.

If C1 was the second clock to ring, we know from our representation that the location of the first cut
in Θ is uniformly distributed along the red segments associated with the winning clock C2. Also, in that
case the time of this cut has exponential distribution with the rate λ2 of clock C2, but truncated at tΦ

since we assume that C2 rang before tΦ.
Hence we obtain a simple algorithm for sampling from the conditional distribution M | (MΦ = mΦ):

we sample T2 ∼ Exp(λ2), the time when clock C2 rings. If T2 ≤ tΦ we extend the first cut CΦ in Φ to the
whole of Θ; otherwise we sample the first cut of Θ uniformly from the locations where it won’t hit Φ. In
both cases we thus obtain the first cut in Θ. Then by definition of the Mondrian process we may proceed
independently and recursively on the two boxes Θ<, Θ> created by the first cut in Θ. (Note that if this
cut is not CΦ then on one of its sides we are no longer conditioning on anything, i.e. an unconditional
Mondrian will be sampled in that recursive call.)
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1.4 Remarks

In this chapter we have defined the Mondrian process and attempted to give intuitive explanations for
how the choice of exponential distribution and the notion of competing exponential clocks translate into
some of its elegant properties. A rigorous treatment of the Mondrian process requires additional concepts
from measure theory and can be found in Dan Roy’s PhD thesis [3]. For example, one of the issues
we have ignored in our exposition is the possibility of the process exploding, i.e. infinitely many cuts
occurring in a bounded box in finite time. Roy [3] confirms that this happens with probability 0.

Also, the Mondrian process can be defined slightly more generally. The only property of the uniform
distribution for sampling cut locations that we have used in our arguments is that it is continuous and
therefore with probability 1 no two cuts occur at the same location. Thus instead we may take D atomless
measures µ1, . . . , µD on R, define the linear dimension of Θ = Θ1 × · · · ×ΘD as LD(Θ) =

∑D
d=1 µd(Θd)

and sample cut locations in dimension d from the (possibly unnormalized) measure µd. This preserves the
self-consistency property and the notion of Conditional Mondrians, while the one dimensional Mondrian
becomes a Poisson Point Process with (non-constant) intensity function λµ1. Our intuitive arguments
translate into this more general setting by replacing all interval lengths y−x in dimension d with µd([x, y]).

Figure 1.6: Piet Mondrian: Composition with Large Red Plane, Yellow, Black, Gray, and Blue (1921).
The Mondrian process has been named after the French painter Piet Mondrian due to the resemblance
of some of his work to partitions generated by a Mondrian process [3]. However, note that unlike the
depicted painting, partitions generated by a Mondrian process will not have two cuts crossing each other.



Mondrian forests

Apart from exhibiting elegant properties, the Mondrian process turns out to be useful in various machine
learning tasks. In this chapter we give a high-level description of Mondrian forests, a concept introduced
in [2] for online random forest classification. However, in line with the focus of subsequent chapters, we
concentrate on regression rather than classification here. The regression problem is defined as follows.

Definition 2.1. Regression is the problem of learning a function f : RD → R from a set of training
data points D = {(x1, y1), . . . , (xN , yN )} ⊆ RD × R, where yn is a possibly noisy observation of f(xn).

Given a new test point x∗ ∈ RD, the learned function f̂ predicts ŷ = f̂(x∗) for the value of f(x∗).

In particular, we assume the input space to be RD. The inputs x are D-dimensional vectors whose
components are called features or attributes. Each feature can be thought of as a quantifiable property
of the input, and one hopes that these features provide information useful for estimating the target value.

A powerful idea exploiting the assumption that nearby points tend to have similar target values is to
partition the input space RD into connected blocks RD =

⊔
i∈I Bi and to use a simple regression model

in each block. For example, when asked for a prediction at a test point x∗ ∈ RD, we might return the
average target value across those training points (xn, yn) that fall into the same block Bi as x∗ does.

Instead of a single partition, a random forest model obtains M partitions from M independent decision
trees that hierarchically partition the input space. At test time, each tree provides a prediction and their
average is returned. Using several trees instead of a single one is a bias reduction technique, useful because
the partition generated by a single tree is rarely complex enough to match the patterns in training data.

A Mondrian forest algorithm uses M independent samples from a Mondrian process with finite lifetime
λ to provide the M partitions of RD. For Mondrian forest regression, in each cell of each partition we use a
constant prediction model with a Gaussian prior N (µ, σ2

prior) and Gaussian observation noise N (0, σ2
noise),

as in Example 0.7. Apart from acting as a regularizer, the prior ensures that predictions are well-defined
in partition cells with no training data.

Input: training set D = {(x1, y1), . . . , (xn, yn)}, lifetime parameter λ ≥ 0, test point x∗
Output: estimate ŷ of f(x∗) that utilizes information from the training data D
1: procedure Train(D, λ)
2: for m = 1 to M do
3: Tm ∼ MP(λ,RD)
4: For each partition cell (leaf) c in Tm, compute the posterior N (µc, σ

2
c ) . Example 0.7

5: return (T,µ)

1: procedure Predict(x∗)

2: return 1
M

∑M
m=1 µlm(x∗) . lm(x∗) is the leaf into which x∗ falls in tree Tm

The algorithm prescribes sampling Mondrian processes on Euclidean space RD, which is strictly
speaking impossible as they contain infinitely many cuts with probability 1. However, we can invoke
self-consistency and only sample the Mondrians on a bounded box containing all the datapoints. This is
sufficient because the Mondrian samples are only used to partition the datapoints. When new training
points arrive in an online learning setting, the notion of Conditional Mondrians allows us to extend the
M existing samples to larger regions if necessary.

In the test phase we also need to incorporate test points x∗ into the partition. We could again employ
Conditional Mondrians if the Mondrian samples have not yet been instantiated at the point x∗. However,
[2] points out that it is easy to consider all possible extensions of the partitions analytically and compute
a prediction by integrating over them. Whenever the test point x∗ lies outside of the region where a
Mondrian sample is instantiated, the notion of Conditional Mondrians tells us exactly the probability
with which x∗ is separated from the other datapoints by a new cut, in which case the prediction made at
x∗ is simply the predictive prior.

For a more detailed description of Mondrian random forests we refer the interested reader to [2], where
the aforementioned procedures are transparently presented.

11
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Predictive behaviour far from training data

When a test data point x∗ lying far from any training points arrives, the probability that a cut separates
it from the training data is high and in that case the predictive distribution is simply the prior. So for a
test point x∗ far from training data, thanks to integrating over all possible extensions of the M Mondrian
samples to incorporate x∗, the predictive distribution is (close to) the prior. Hence we do not observe
over confident predictions far from training data, as we do in some other random forest models [5].

Classification

The Mondrian random forest model for classification presented in [2] uses the same model for partitioning
the input space as outlined above for regression. It only differs in the predictive model used in the leaves,
which needs to predict classes rather than a continuous target value. A hierarchical Bayesian modeling
approach is taken to achieve a smoothing effect: the hierarchical partitions provided by the Mondrian
samples are treated as trees and each node of the tree (not just the leaves) is associated with a predictive
distribution. Under the prior, the predictive distribution of a non-root node n is modeled as a normalized
stable process (NSP) with base distribution being the predictive distribution of n’s parent.

Density estimation

Density estimation differs from regression and classification in that it is an unsupervised problem, i.e.,
no labels are observed in training data.

Definition 2.2. Density estimation is the problem of learning a probability density p from a set of
training samples D = {x1, . . . , xN} ⊆ RD generated from p. Given a new test point x∗, the learned
density p̂ estimates p̂(x∗) for the true density at point x∗.

A Mondrian random forest model for density estimation needs to be able to predict density values
in its leaves, noting that a probability density must integrate to 1. To this end, we associate cells of
the partitions generated by the Mondrians with probability masses, ensuring that the total mass in one
partition is 1. However, to arrive at the density, the probability mass associated with a box needs to be
divided by the volume of that box. This requires us to be able to compute volumes of the partition cells
generated by the Mondrians, unlike in regression or classification where it was only the partition induced
on the data points that was relevant. As density estimation is not a main theme of this report, a more
detailed description of Mondrian random forest density estimation is given in the appendix.

2.1 Empirical evaluation

Note that the partitioning of the input space by M Mondrian samples does not take into account labels
(target values) of the training data points (in the case of regression and classification, where these labels
are present). It is therefore quite remarkable that an algorithm like this can still achieve as competitive
predictive performance as shown in [2].

We have implemented a Mondrian random forest algorithm both for regression and density estimation.
More illustrations of empirical results obtained are shown in the chapter on regularization paths, where
the models are endowed with an additional functionality that allows them to be evaluated much more
efficiently.
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Figure 2.1: We train a Mondrian random forest
density estimator on the Setosa class of the well-
known Iris dataset from UCI repository [6], using
several values of the lifetime parameter λ. Re-
call that the lifetime controls the complexity of
the partitions generated by the Mondrian process.
The horizontal axis of the figure shows this life-
time parameter λ of the Mondrian process from
which M = 200 samples were drawn. The vertical
axis show the log-likelihood of the learned model
on both training (red) and test (green) data. The
plot shows how the lifetime parameter affects the
complexity of the model: the training likelihood
increases as the model gets more complex and is
able to fit the training data better, while the test
log-likelihood peaks and then starts to decrease
as the model overfits to the noise present in train-
ing data. Note that for each value of the lifetime
shown, we have trained a new Mondrian random
forest density estimation model from scratch. In
the chapter on computing entire regularization
paths we will present a much more efficient ap-
proach, where a single model will be evaluated
for all possible lifetime values in a given range.

Figure 2.2: A density estimation procedure can
be used indirectly for classification by estimating
the probability density of all classes at training
time and when a new test point x∗ is presented,
the density of all classes at x∗ can be estimated.
Our prediction may then be the class with high-
est density at x∗. In the figure we compare two
such classifiers: one that uses Mondrian random
forest density estimation and another that uses
standard kernel density estimation (KDE) with
the squared exponential kernel. The dataset con-
sists of images of digits 0 and 9, taken from the
popular MNIST dataset [7]. The horizontal axis
shows the number of dimensions into which the
inputs were projected using linear PCA. The ver-
tical axis shows the error rate of the classifiers
in distinguishing the digits 0 and 9. It seems
that the Mondrian approach is more competi-
tive in smaller number of dimensions. We have
attempted to set the hyperparameters of both
models to sensible values and kept them constant
throughout these experiments.



Laplace Kernel Approximation

This chapter presents a different way of utilizing Mondrian processes in regression problems, by way
of approximating the Laplace kernel in a kernel ridge regression setting. We start by reviewing ridge
regression as an instance of MAP parameter estimation and show how it can be kernelized.

3.1 Ridge regression

Say we want to model a dataset D = {(x1, y1), . . . , (xN , yN )} ⊆ RD ×R using a linear model of the form

yn = xTnθ + εn where ε1, . . . , εN
i.i.d.∼ N (0, σ2

noise)

with σnoise > 0 fixed and θ to be learned. Suppose we express our belief that parameters are unlikely to
take on arbitrarily large values by placing a spherical Gaussian prior θ ∼ N (0, σ2

priorID) on θ. It can be
shown (see Theorem A.9 in the appendix for a proof) that the MAP estimate of θ under this prior and
likelihood can be found by minimizing the L2-regularized least squares objective function

f(θ) := δ2‖θ‖22 +

N∑
n=1

(yn − xTnθ)2

where δ := σnoise

σprior
> 0. The δ2 factor weights the strength of the regularizer: regularization is strong

when the ratio of noise and prior variances is large, allowing us to attribute any outliers to noise in the
observations. Conversely, regularization is weak when the noise variance is small (in comparison to the
prior variance), forcing the model to better match the training observations.

The function f(θ) is easily minimized using matrix calculus. To this end, we construct the design
matrix X ∈ RN×D whose n-th row is the data vector xTn , and let y ∈ RN be a vector with n-th entry set
to yn. The function f(θ) can then be vectorized as

f(θ) = δ2‖θ‖22 + ‖y −Xθ‖22

As Theorem A.10 in the appendix shows, for δ > 0 this function has a unique global minimum at

θMAP = (XTX + δ2ID)−1XTy

Kernelizing ridge regression

This formula requires inverting the D × D matrix XTX + δ2ID, which involves the feature covariance
matrix XTX. As Theorem A.11 in the appendix shows, θMAP can be alternatively expressed in terms of
the N ×N matrix XXT + δ2IN , where instead the data covariance matrix XXT appears:

θMAP = XT (XXT + δ2IN )−1y

Occasionally we may have D > N , in which case this second form leads to more efficient inversion of a
smaller matrix. However, we consider it because it allows the prediction ŷ at a new test point x∗ to be
expressed in terms of inner products between data points. More concretely, this prediction is

ŷ = xT∗ θ
MAP = (xT∗XT )(XXT + δ2IN )−1y

Here xT∗XT ∈ RN is a row vector with n-th entry the inner product xT∗ xn and XXT ∈ RN×N is the data
covariance matrix with (i, j)-entry the inner product xTi xj . The famous ”kernel trick” is to observe that in
a model like this where data locations only enter through inner products xT x′, we can replace these inner
products by a general kernel function k(x, x′). This kernel function must correspond to inner products
in some feature space, but this feature space can be arbitrarily complex, even infinite dimensional. The
trick is that we are able to compute inner products in that feature space efficiently via the kernel function
k(x, x′), without the need to map input data to that feature space explicitly. Note that this moves us to
the world of non-linear regression, since a linear function in the implied feature space usually does not
correspond to a linear function in input space.

14
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A function k is a valid kernel if and only if the resulting Gram matrix is positive semidefinite for any
collection of datapoints {x1, . . . , xn}. This result is known as Mercer’s Theorem.

When we replace inner products xT x′ by the kernel k(x, x′), the data covariance matrix XXT is
replaced by the Gram matrix K with (i, j)-entry k(xi, xj) corresponding to the inner product of the
i-th and j-th training data point in the feature space implicitly represented by the kernel function k.
Similarly, the row vector xT∗XT ∈ RN is replaced by k(x∗,X) ∈ Rn, which is a vector with n-th entry
equal to k(x∗, xn). Then the prediction ŷ is given by

ŷ = k(x∗,X)(K + δ2IN )−1y

3.2 Kernel approximation

To compute this prediction ŷ we need access to the inverse of the N × N matrix K + δ2IN . Even
though this inversion only needs to be performed once, the Θ(N3) computational cost of inverting such
a matrix is prohibitive with large datasets. It is not possible to revert to the earlier formulation of the
ridge regression solution involving a D × D matrix inversion, because that formulation is not in terms
of inner products between datapoints. Instead, it has been proposed in [8] to compute a randomized
low-dimensional feature map z : RD → RC (with C � N) such that

k(x, x′) ≈ z(x)T z(x′)

i.e., such that inner products in the generated low-dimensional feature space approximate the desired
kernel k. Using z to map each data point x to its low-dimensional feature representation z(x), we can
then use the first ridge regression solution formulation θMAP = (ZTZ + δ2IC)−1ZTy, where Z ∈ RN×C
is the feature matrix with n-th row equal to z(x)T . This only requires inverting a C×C matrix, allowing
this (approximate) solution to be computed in time O(C3 + C2N). As N is expected to dominate C,
this is essentially O(C2N).

Many kernels turn out to be effectively approximable this way, with [8] giving two general schemes
for constructing the random feature mapping z. In this section we show how the Mondrian process can
be used to approximate one particular kernel, the (symmetric) Laplace kernel.

Definition 3.1. The (symmetric) Laplace kernel is given by

k(x, x′) = exp (−λ‖x− x′‖1) = exp

(
−λ

D∑
d=1

|xd − x′d|

)

where λ is a lifetime parameter of the kernel.

Remark. The Laplace kernel is usually equivalently defined with a length-scale parameter σ that is
related to our lifetime parameter λ via λ = 1/2σ2, or λ = 1/2σ or λ = 1/σ. Our parametrization and
naming of the λ parameter as lifetime is non-standard, chosen here because of the connection to the
Mondrian process lifetime that will be revealed next.

The term ”symmetric” is used here to point out that this kernel has a single lifetime parameter λ
common to all D dimensions. The last chapter on the Mondrian grid is concerned with approximating
the general Laplace kernel, where each dimension can have a different lifetime parameter λd.
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Symmetric Laplace kernel approximation

To approximate the Laplace kernel for a collection of datapoints {x1, . . . , xN}, suppose we sample a
Mondrian process on RD with a finite lifetime λ. As we will only be interested in the partitioning of
data points induced by the sample, by self-consistency we can simply sample the Mondrian on minimal
bounded boxes containing the data points, as in Mondrian random forest regression. Let C be the number
of non-empty partition cells (containing at least one data point) of the sampled Mondrian and label them
as l1, . . . , lC . Let l(x) be the function that returns the cell into which point x ∈ RD falls. We define our
random feature mapping x 7→ z(x) ∈ RC as

z(x) := (I(l(x) = l1), . . . , I(l(x) = lC))
T

This is simply the indicator vector of the partition cell into which x falls. In particular, it contains a
single non-zero entry. The inner product between two datapoints in the feature space defined by z is

z(x)T z(x′) = I(l(x) = l(x′)) =

{
1 if x, x′ are in the same partition cell

0 otherwise

Observe that two datapoints x, x′ fall into the same cell if and only if the Mondrian sample has no cut in
the minimal axis-aligned box B({x, x′}) containing x and x′. By self-consistency, the probability of this
happening is the same as that of running a Mondrian process M with the same lifetime λ on the box
B({x, x′}) and not observing any cuts. Thus

P(z(x)T z(x′) = 1) = P(M′ contains no cuts)

= P(first cut time in M′ is > λ)

= P (Exp (LD(B({x, x′}))) > λ)

= P (Exp (‖x− x′‖1) > λ)

= exp (−λ‖x− x′‖1) |x1 − x′1|

|x2 − x′2|

x

x′

B({x, x′})

So inner products in our random feature space are Bernoulli random variables and their expectations
are precisely the kernel values we want to approximate. To decrease the variance of the approximations,
instead of using a single Mondrian, we may sample M independent Mondrians and obtain the randomized
feature mapping z(x) by concatenating feature vectors z1(x), . . . , zM (x) from the M Mondrian samples.
We normalize this vector by M−1/2, so that(

z(x)√
M

)T (
z(x′)√
M

)
=

1

M
z(x)T z(x′) =

1

M

M∑
m=1

zm(x)T zm(x′) −→ E[z1(x)T z1(x′)] = e−λ‖x−x
′‖1

As a Monte Carlo estimate, the convergence to the Laplace kernel as M → ∞ is at the standard rate,
i.e., the standard deviation of the estimator decreases as O(M−1/2).
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Empirical evaluation

We check experimentally that as the number M of Mondrian samples increases, the performance of
the resulting regression model approaches the performance of a model using the exact Laplace kernel.
The training data size Ntrain = 3000 is chosen so that we see a computational benefit from using our
approximation but an exact O(N3

train) computation is still possible given enough resources. Recall that
the asymptotic time complexity of one approximate computation is O(C2N), where C is the number of
dimensions of the random feature space produced by z.

We have also implemented another approximation scheme called Random Binning [8] to compare
against our Mondrian approximation. Random Binning has a hyperparameter playing a similar role as
M that affects the number of random features produced.
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Figure 3.1: Convergence to exact kernel regressor as number C of generated features increases. The
left plot uses (a random subset of) the CPU dataset, while on the right (a random subset of) the
Census dataset was used. CPU and Census are the two regression datasets used in [8] where Random
Binning was introduced. The horizontal axis shows the number of random features C produced by the
approximations, while the vertical axis shows the RMSE of the resulting regression model on a validation
data set. The horizontal green line (with dotted standard deviation estimates) is the RMSE obtained
when using the exact Laplace kernel. We see that the Mondrian approximation and Random Binning
need to generate a similar number of random features to achieve the same predictive performance, and
that this performance approaches the performance of the exact classifier as the number of random features
increases. Random Binning is perhaps slightly more sensitive to randomness, as indicated by occasionally
much larger standard deviations for both the number of features produced and the validation set RMSE.

As we shall see in the following chapter, the main advantage of the Mondrian approximation (over,
say, Random Binning) is that it can be efficiently evaluated for all possible lifetimes λ of the approximated
kernel in a given range λ ∈ [0,Λ]. With Random Binning the approximation needs to be reconstructed
from scratch for each new lifetime value.

3.3 Comparison with Mondrian forest regression

We have presented two non-linear regression models utilizing Mondrians: the Mondrian random forest
and the Mondrian approximation of the Laplace kernel. In both models we independently sample M
partitions of the data points at hand, but these partitions are then used differently. In Appendix B
on Model interpretation we briefly discuss the theoretical similarities and differences between these two
models. We show that they are both linear smoothers, that they coincide in the case M = 1 and show
that for M > 1 they can be interpreted as approximating two different quantities.



Regularization paths

The statistical complexity of many machine learning models can be controlled by adjusting their hyper-
parameters. In Mondrian process based models this role is played by the lifetime λ of the Mondrian,
which controls the complexity of the generated partitions.

Suitable hyperparameter values for modeling the dataset at hand are usually found by cross validation,
a technique of splitting the dataset into a training set Dtrain := {(x1, y1), . . . , (xNtrain , yNtrain}) and
a validation set Dval := {(xNtrain+1, yNtrain+1), . . . , (xN , yN )}, training several models on the former
and choosing the hyperparameter values giving the best performance on the latter. As this procedure
contaminates the validation set, we usually preserve an untouched test set on which the performance of
the model with the finally chosen hyperparameters can be more accurately estimated. In the following
we implicitly assume that such an independent test set is always preserved.

Training several models with different hyperparameters is often daunting and computationally expen-
sive, especially if for each new hyperparameter configuration the model needs to be trained from scratch.
It would be desirable to reuse some parts of the computation with one set of hyperparameters for training
and evaluating the model with a new set of hyperparameters. The notion of computing entire regular-
ization paths [9] takes this idea to the extreme: it trains and evaluates the model for all possible values
of a regularization hyperparameter at essentially the cost of training and evaluating a single model.

In this chapter we outline how this can be done with the lifetime parameter λ in Mondrian process
based models. We focus on regression, but the ideas also apply to classification and density estimation.

General setup

All our Mondrian models start by generating M Mondrian samples to provide M partitions of the data
points. Recall that each cut in each Mondrian is associated with a birth time 0 ≤ tb ≤ Λ, where Λ is
some terminal lifetime until which the Mondrians are sampled. Let K be the total number of cuts in all
M samples combined, and let 0 < t1 < · · · < tK be an ordered list of their times (the values are distinct
with probability 1).

Given the cuts in the Mondrian samples, the model is deterministic. So as time increases from 0 to
Λ and new cuts appear in the trees, the model only changes at the K time instants when a cut is added
to one of the trees. To be able to efficiently compute the entire regularization path over the lifetime, i.e.
to train and validate the model for all lifetimes λ ∈ [0,Λ], we need to be able to perform the following
operation efficiently:

(O1) Given the model trained and evaluated with lifetime ti, compute the model trained
and evaluated with lifetime ti+1.

Sometimes we will find it easier to traverse the regularization path backwards, which is to say that
we train and evaluate the model with the maximal lifetime value Λ and then efficiently compute the
results for all smaller values of the lifetime in decreasing order. For that, efficient way of performing the
following operation is required:

(O2) Given the model trained and evaluated with lifetime ti, compute the model trained
and evaluated with lifetime ti−1

Performing operations (O1) or (O2) in Mondrian random forest models for classification, regression
or density estimation turns out to be quite simple, as outlined in the next section. It will be slightly more
challenging for the Mondrian approximation of the Laplace kernel since the Mondrians do not directly
make predictions, they only provide a randomized feature mapping.

4.1 Mondrian random forest

We traverse the regularization path forwards, starting with lifetime λ = 0 and performing operation
(O1) whenever a new cut appears in any of the M trees. Apart from the regression trees themselves, we
maintain two global quantities: the mean squared error on a validation dataset MSE ∈ R and the vector
ŷ ∈ RN whose n-th entry is the forest prediction at the n-th data point. We initialize all entries of ŷ to
the mean of the predictive prior and compute the resulting MSE in time O(N).

Suppose that at time ti a leaf l in tree m is split into two new child leaves l1, l2. As predictive
distributions in individual leaves are independent, the predictions only change for data points in l. The
posterior predictive distributions in leaves l1, l2 can be computed analytically in time linear in the number
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of datapoints that end up in these leaves (see Example 0.7). To see how the model predictions ŷ and the
MSE are updated, suppose that xn is a point originally in l that ends up in, say, leaf l1 after the split. If
µl is the mean of the predictive distribution in l before the split and µl1 is the corresponding quantity in
l1 after the split, the global prediction of the forest at point xn can be updated as

ŷ′n ← ŷn −
µl
M

+
µl1
M

since the prediction is simply the average from the M trees. The corresponding update of the MSE is

MSE′ ← MSE− (ŷn − yn)2

N
+

(ŷ′n − yn)2

N

Note that these updates take constant time per datapoint in each split, so maintaining the predictive
distributions, ŷ and MSE only multiplies the running time by a constant. Hence the entire regularization
path is computed at essentially the same cost as training and evaluating the model at the terminal lifetime
Λ. Finally, note that the RMSE can at any time be easily computed as RMSE =

√
MSE.

Examples

Below we show examples of regularization paths for regression (on the left) and for density estimation
(on the right). The validation set RMSE function is computed using the above described procedure and
so is the training set RMSE function after simply taking Dval = Dtrain.
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Figure 4.1: Mondrian random forest regression
regularization path. As expected, the red training
set RMSE decreases as the flexibility (complexity
of partitions) of the model increases, while the
green validation set RMSE reaches a minimum
and then increases as the model starts to overfit
to the noise in training data. Both curves are
piecewise constant, with jumps occurring only at
times when a cut appears in one of the M trees.
This may not be clearly visible only because of
the large number of cuts. The regression dataset
used here is Combined Cycle Power Plant [10].
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Figure 4.2: Mondrian random forest density es-
timation regularization path. The regularization
path for Mondrian random forest density estima-
tion can be computed by essentially the same pro-
cedure as for regression, with the exception that
instead of predictions and mean squared errors
(MSE) we maintain the likelihoods of each data
point. For density estimation it is also possi-
ble to efficiently compute the leave-one-out log-
likelihood. All log-likelihoods are normalized for
the number of datapoints. As expected, the val-
idation and leave-one-out likelihoods peak and
then decrease as the more flexible model starts
overfitting the training data. The dataset used
here is the Setosa class form the Iris dataset. [6]
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4.2 Laplace kernel approximation

In the Mondrian approximation of the Laplace kernel each datapoint x is encoded as a (normalized)
concatenation z(x) of M indicator vectors z1(x), . . . , zM (x), where zm(x) indicates which partition cell of
the m-th Mondrian the point x falls into. When a new cut appears in one of the Mondrians, a partition
cell is split into two. This corresponds to replacing the feature associated with this cell by two new
features, one for each child cell. Conversely, when traversing the regularization path backwards and a cut
is removed from one of the Mondrians, the two features corresponding to the merged cells are replaced
by their sum. (The sum of indicators of disjoint sets is the indicator of their union.)

Recall that the random feature representations of the datapoints are organized in the feature matrix
Z ∈ RN×C . Each column of Z corresponds to one feature, i.e. one partition cell in one of the M Mondrian
samples. Adding new features amounts to appending new columns to this matrix, while summing two
features corresponds to summing the corresponding columns. Both operations can be carried out easily
in O(NC) time. The challenge lies in the fact that the predictions of the model are a non-trivial function
of Z: the prediction ŷ at a test point z∗ = z(x∗) is given by ŷ = θT z∗, where θ is the ridge regression
solution

θ = (ZTZ + δ2IC)−1ZTy

When columns of Z (features) are added, removed or summed we need to efficiently update the inverse
(ZTZ + δ2IC)−1 in order to compute predictions under the new feature mapping. To this end, the
next subsection reviews a set of general tools for efficiently updating matrix inverses under specific
perturbations of the matrix that is being inverted.

Matrix inverse updates

Lemma 4.1 (Sherman-Morrison-Woodbury inversion formula). For any matrices A ∈ Rn×n, U ∈ Rn×k,
C ∈ Rk×k, V ∈ Rk×n with A and C invertible, if the matrix C−1 + VA−1U is invertible then

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1

Proof. Direct computation yields (A + UCV)(A−1 −A−1U(C−1 + VA−1U)−1VA−1) = In.

An important special case of this formula allows us to update a matrix inverse after a rank-one update,
i.e. after the addition of a rank-1 matrix uvT :

Corollary 4.2 (Rank-1 matrix inverse update). Let A ∈ Rn×n be an invertible matrix and let u,v ∈ Rn
be column vectors. If 1 + vTA−1u 6= 0 then

(
A + uvT

)−1
= A−1 −A−1u(1 + vTA−1u)−1vTA−1 = A−1 − A−1uvTA−1

1 + vTA−1u

Proof. Apply the Woodbury inversion formula (Lemma 4.1) with U = u, V = vT and C = 1.

If A−1 is known, by bracketing the numerator in Corollary 4.2 as (A−1u)(vTA−1) we can compute
the inverse of the rank-1 updated matrix A + uvT in time O(n2), as opposed to the O(n3) running time
of matrix inversion from scratch. Note that the following operations are all rank-1 updates:
• Adding the j-th row rj to the i-th row ri. This amounts to replacing ri with ri + rj , which can be

expressed as the addition of uvT with u = ei and v = rTj .
• Adding the j-th column cj to the i-th column ci. This amounts to replacing ci with ci + cj , which

can be expressed as the addition of uvT with u = cj and v = ei.
• Add a constant a ∈ R to the i-th entry on the main diagonal. This can be expressed as the addition

of uvT with u = aei and v = ei.
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Lemma 4.3 (Inverse of a submatrix). Let A ∈ Rn×n be invertible, let 1 ≤ i ≤ n and let Ã be the matrix
obtained from A by deleting its i-th row and i-th column. Let E be the submatrix of A−1 obtained by
deleting its i-th row and column, let f be the i-th column of A−1 with the i-th entry removed, let g be the
i-th row of A−1 with the i-th entry removed, and finally let h be the (i, i) entry of A−1.
If h 6= 0 then Ã is invertible and its inverse is Ã−1 = E− fgT /h.

Proof. The proof appears as Lemma A.14 in the appendix.

This lemma is sufficiently general for us, since the rows and columns of matrices that we will be
inverting correspond to features in the same order and so we won’t need to remove the i-th row and j-th
column for i 6= j. Also, note that given A−1, the update Ã−1 = E − fgT /h can be computed in O(n2)
time as E, f , g and h can be easily extracted from A−1.

Lemma 4.4 (Inverse of an extended matrix). Let A ∈ Rn×n be invertible. For b ∈ Rn, c ∈ Rn and
d ∈ R, the extended matrix [

A b
cT d

]
is invertible if and only if its Schur complement s := d− cTA−1b 6= 0, in which case the inverse is[

A b
cT d

]−1

=

[
E f
gT h

]
where

E = A−1 + s−1A−1bcTA−1 f = −s−1A−1b
g = −s−1cTA−1 h = s−1

This inverse can be computed from A−1 in time O(n2).

Proof. Appears as Lemma A.15 in the appendix.

Removing a cut

To demonstrate different concepts, we choose to traverse the regularization path backwards for this model.
As discussed in the introduction of this chapter, we train and evaluate the model for some terminal lifetime
value Λ and then seek to efficiently revert each cut one-by-one (operation (O2)), in decreasing order of
their birth times.

Suppose we want to revert the effect of cut c with birth time tb appearing in the m-th Mondrian
sample. We assume we have access to the feature matrix Z and the inverse C−1 = (ZTZ + δ2IC)−1

corresponding to features generated by the Mondrians with lifetime tb (i.e., with the cut c present in the
m-th Mondrian). Let i, j be the indices of the two features introduced by the cut c. Reverting this cut
amounts to merging these two features together and since they are (rescaled) indicators of disjoint sets,
this is equivalent to summing the i-th and j-th columns zi, zj of Z together. Thus our goal is to obtain
the updated inverse

C̃−1 = (Z̃T Z̃ + δ2IC̃)−1

where C̃ = C − 1 and Z̃ is the matrix obtained from Z by replacing its i-th and j-th column by their
sum. (The sum replaces the i-th column, and the j-th column is removed, say.)

We express the operation of computing C̃ from C as a sequence of four operations in such a way
that after performing each individual one the resulting matrix is still invertible and the inverse can be
computed in time O(C2) using the above introduced tools.

1: Add row j to row i . Rank 1 update, Corollary 4.2
2: Add column j to column i . Rank 1 update, Corollary 4.2
3: Delete the j-th row and j-th column . Inverse of a submatrix, Lemma 4.3
4: Subtract δ2 from the (i, i) entry . Rank 1 update, Corollary 4.2

It is important to carry out steps (3) and (4) in this order, so as to guarantee existence of the inverse
after each step. The matrix remains invertible after steps (1) and (2) because adding a row to another
row (or a column to another column) is an elementary operation that preserves the rank of the matrix.
The inverses after performing steps (3) and (4) are guaranteed to exist because the resulting matrices are
in both cases positive definite, as can be easily checked.

Note that we do not in fact require maintaining the matrix C; it suffices to maintain C−1 and Z as
they contain all that is required to perform the updates to C−1.



Matej Balog 22

Implementation

We start by computing the Mondrian approximation of the Laplace kernel with the terminal lifetime
Λ. This produces M Mondrian trees, each consisting of a hierarchy of cuts with birth times tb ∈
[0,Λ]. We traverse through these cuts in decreasing order of birth time, at each birth time removing
the corresponding cut. The previous section describes how the matrix C−1 can be appropriately updated
in time O(C2). Having access to this updated inverse, predictions on the validation set can be made via
ŷ = zT∗ θ, where θ = C−1(ZTy). Using the shown bracketing, the parameter vector θ can be computed
in time O(C2 +CNtrain). The predictions on Nval validation points and the resulting RMSE can then be
computed in time O(NvalC). Hence the total time complexity of removing a single cut is O(C2 + CN).
As there are C −M cuts to be removed before lifetime 0 is reached, the time complexity of traversing
the entire regularization path from Λ down to 0 is O(C3 +C2N). This is the same as the cost of training
and evaluating the initial model with lifetime Λ.
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Figure 4.3: Regularization path of Laplace kernel approximation using M = 50 Mondrian trees. The
piecewise constant function shows the validation set RMSE of the resulting regression model as a function
of the lifetime. In this configuration the regularization path seems to be sensitive to randomness, since
large jumps occur at times when particularly well placed cuts appear in one of the trees. The dataset
used is (a random subset of) CPU, one of the regression datasets used in [8].

Conclusion

Initially we have introduced the Mondrian approximation of the symmetric Laplace kernel as a way of
avoiding the computationally expensive inversion of an N × N (regularized) kernel matrix. While this
reason still holds, efficient computation of the entire regularization path of this approximation leads to
another use case: even if a single O(N3) computation with exact Laplace kernel is feasible, we may
want to use the Mondrian approximation to efficiently find a value of the lifetime that performs best on
the validation set. As the lifetime can be seen as controlling model complexity, this yields an efficient
procedure for determining a suitable model complexity for the dataset at hand. When using the exact
Laplace kernel, we would probably need to retrain the model from scratch for several values of the lifetime,
each value requiring a new O(N3) matrix inversion.



Mondrian Grid

We have seen how the Mondrian process is useful for approximating the symmetric Laplace kernel, sharing
a common lifetime λ for all D input dimensions. Moreover, we have seen that the entire regularization
path over the lifetime λ can be efficiently computed, leading to efficient determination of the right model
complexity for a dataset at hand. In this chapter we seek to achieve the same goal with a more general
Laplace kernel where different dimensions are allowed to have different lifetimes:

Definition 5.1. The (general) Laplace kernel is given by

k(x, x′) = exp

(
−

D∑
d=1

λd|xd − x′d|

)

where λ1, . . . , λD are lifetime parameters of the kernel.

If we were only interested in training a single model with a fixed lifetime configuration λ = (λ1, . . . , λD),
we could still use the previous Mondrian approximation after rescaling each input dimension d by λd and
then using a symmetric Laplace kernel of lifetime 1. However, we are interested in an efficient procedure
for the cross validation problem

argmin
λ1,...,λD

error((λ1, . . . , λD),Dval)

The Mondrian process has the limitation that when stopped at a single lifetime λ, this lifetime is common
to all dimensions. Therefore the earlier presented Mondrian approximation of the Laplace kernel is only
useful for cross validation if ratios of lifetimes in different dimensions can be fixed. In this chapter we
propose a method that does away with this requirement, allowing us to adjust the approximated lifetime
in each dimension independently. This model is no longer based on a D-dimensional Mondrian process,
but rather on D independent one-dimensional Mondrian processes (which have been shown to coincide
with Poisson point processes in Theorem 1.10).

Mondrian grid approximator

A Mondrian grid is a collection of D independent one-dimensional Mondrian processes M (1), . . . ,M (D),
where M (d) is assumed to run on the d-th coordinate axis of RD.
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Figure 5.1: A sample of a Mondrian
grid in 2 dimensions. The point

x
(d)
i is a cut location in the sam-

ple from the Mondrian M (d), the
dashed lines show the corresponding
cuts of R2. Points a and b are in the
same grid cell, whereas the point c
falls into a different one. Thus here
N = 3 and C = 2.

Suppose we sample a Mondrian grid, which is to say that
we sample from independent one-dimensional Mondrian processes
along each coordinate axis, say until a lifetime λd in dimension d.

The cut locations x
(d)
1 < · · · < x

(d)
Cd

of M (d) provide a partitioning
of the d-th coordinate axis, which in turn yields a partitioning of
RD by hyperplanes orthogonal to the d-th coordinate axis, crossing
it at the cut locations of M (d). (See Figure 5.1 for a 2D illustration,
where these hyperplanes are dashed lines.)

The cuts induced by all the D Mondrian samples together parti-
tion RD into cells, maximal connected subsets of RD not intersect-
ing any cutting hyperplane. Unlike in a D-dimensional Mondrian
process, these cuts extend all the way through space, uninterrupted
by cuts in different dimensions. Hence the name Mondrian grid.

Let C be the number of non-empty grid cells. Similarly as with
the Mondrian approximation of the Laplace kernel, our random fea-
ture mapping z : RD → RC maps each datapoint x to an indicator
vector z(x) of the grid cell into which x falls. Dot products in this
feature space are then

z(x)T z(y) =

{
1 if x, y fall into the same grid cell

0 otherwise

23
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Using independence of the processes M (1), . . . ,M (D) on each axis we have that

P(z(x)T z(y) = 1) = P

(
D⋂
d=1

{no cut between xd and yd in dimension d}

)

=

D∏
d=1

P(no cut between xd and yd in dimension d) [ independence ]

=

D∏
d=1

P (Exp (|xd − yd|) > λd) [ self-consistency ]

=

D∏
d=1

exp (−λd|xd − yd|)

= exp

(
−

D∑
i=1

λd|xd − yd|

)

As with the previous Mondrian approximation, inner products are a Bernoulli random variables with
expectations equal to the desired kernel values and by concatenating feature vectors z1(x), . . . , zM (x)
from M independent grids into a single feature vector z(x) (and normalizing with M−1/2) we obtain the
Monte Carlo estimator(

z(x)√
M

)T (
z(y)√
M

)
=

1

M
z(x)T z(y) =

1

M

M∑
m=1

zm(x)T zm(y) −→ E
[
z1(x)T z1(y)

]
= e−

∑d
i=1 λd|xd−yd|

whose standard deviation decreases as O(M−1/2) as M →∞.

5.1 Regularization paths

With the Mondrian grid approximation we can adjust the approximated lifetime in dimension d individu-
ally, by changing the lifetime λd of the one-dimensional Mondrian on the d-th coordinate axis. Moreover,
it is not necessary to discard the existing grid sample when such a change is made; we only need to
add or remove cuts in dimension d according to whether λd was increased or decreased. In this section
we discuss how the predictions of the resulting regression model (using the feature mapping z) can be
updated when such a change of lifetime in an individual dimension is performed.

Initialization

For each dimension d, let Nd be the number of distinct d-coordinates of all N data points (training and

validation combined) and let x̃
(d)
1 < · · · < x̃

(d)
Nd

be a sorted list of their values.
Observe that the Mondrian grid approximation only depends on how the datapoints are partitioned

into cells by the grid. It does not depend on the number of cuts that separate two points, or on the precise
location of these cuts. More concretely, the partitioning of the datapoints only depends on whether there

is or isn’t a cut in the interval (x̃
(d)
i−1, x̃

(d)
i ), for each 2 ≤ i ≤ Nd and each 1 ≤ d ≤ D. So if for each such

interval (x̃
(d)
i−1, x̃

(d)
i ) we compute the birth time of the first cut t

(d)
i appearing in it, the set of cuts that

yield a grid approximating the Laplace kernel with lifetimes λ = (λ1, . . . , λD) is given by taking the cuts

with birth times t
(d)
i ≤ λd in dimension d. Then by including or removing some of these cuts we will be

able to easily change the lifetimes of the approximated Laplace kernel.
By self-consistency of the Mondrian process, the distribution of the time of the first cut in an interval

(x̃
(d)
i−1, x̃

(d)
i ) is Exp(x̃

(d)
i − x̃

(d)
i−1). We sample this quantity for each such interval M times independently,

once for each grid. There is no need to sample the exact locations of the cuts, but they would of course
be uniformly distributed in the interval.
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Figure 5.2: Example of unique coordinate values x̃
(d)
i for D = 2 dimensions and N = 6 data points.

Distributions of the time of first cut in each interval are also shown.

Before traversing a regularization path along lifetime configurations, we need to pick a starting con-
figuration λ0 = (λ01, . . . , λ0D). For this lifetime configuration we compute the feature matrix Z ∈ RN×C
in time O(NC), where C is the total number of non-empty grid cells in all M grids, where each grid
consists of those cuts in each dimension d that have birth time tb ≤ λ0d. We also compute the inverse
C−1 = (ZTZ + δ2IC)−1 using any standard method in time O(C3).

Example 5.2. A natural initialization point might be the lifetime configuration λ0 = 0, in which case
all M grids contain no cuts and so all datapoints fall into the same cell in each grid. Then Z is an
N ×M matrix with all entries equal to 1/

√
M (each entry znm indicates that the n-th datapoint falls

into the only grid cell in the m-th grid) and the regularized covariance matrix C = ZTZ + δ2IM has all
non-diagonal entries equal to

N∑
n=1

1√
M

1√
M

=
N

M

and all diagonal entries equal to N
M + δ2. Its inverse C−1 = (ZTZ + δ2IM )−1 can be computed in time

Θ(M3) using any standard matrix inversion algorithm. The inverse is guaranteed to exist for δ > 0 as
the matrix is positive definite.

Increasing a lifetime

Say we want to increase the lifetime in dimension d and as a result a new cut is added to the m-th grid

in an interval (x̃
(d)
i−1, x̃

(d)
i ), for some m and i. When this cut is added to the grid, all cells intersected

by this cut are split into two. (Note that in the standard Mondrian approximation, a cut only split one
cell.) However, we will only split those cells where after the split both resulting grid cells will contain
a datapoint. By carrying out this check we ensure that none of the grids contributes a feature that has
value 0 for all datapoints.
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Say we’ve identified that feature zi = (z1i, . . . , zni) (the i-th column of Z) is one of those features that
need to be split by the newly added cut. We construct the two sets

S0 :=
{

1 ≤ n ≤ N | zni > 0, xnd ≤ x̃(d)
i−1

}
S1 :=

{
1 ≤ n ≤ N | zni > 0, xnd ≥ x̃(d)

i

}
of indices of datapoints to the left and to the right of the newly added cut, respectively. Note that even
though the location of the new cut is not determined exactly within (x̃

(d)
i−1, x̃

(d)
i ), this is sufficient because

no datapoint has d-coordinate lying in this open interval by definition. The feature vectors corresponding
to the two new grid cells are then

z′0 :=
1√
M

(I(1 ∈ S0), . . . , I(N ∈ S0))

z′1 :=
1√
M

(I(1 ∈ S1), . . . , I(N ∈ S1))

Now we need to remove feature zi, add the two new features z′0, z′1 to the matrix Z and update the
inverse C−1 = (ZTZ+δ2IC)−1 accordingly. We also need to compute new predictions ŷ on the validation
set and determine the resulting RMSE.

(1) Deleting the i-th column of Z and appending two new columns z′0, z′1 to the end can be performed
easily in time O(NC). (This allows for reallocating memory for Z if necessary.)

(2) The i-th row and i-th column of the regularized covariance matrix C correspond to the removed
feature, so we would delete this row and column from C. Lemma 4.3 on the inverse of a submatrix
tells us how to update C−1 when the i-th row and column of C are deleted, in time O(C2).
The two new features z′0, z′1 appended to Z manifest themselves as two new columns and two new
rows appended to C, where each new entry is a covariance between two features, except for the
two new diagonal entries which are the variances of the two new features plus the δ2 regularization
terms. Lemma 4.4 on the inverse of an extended matrix tells us how to update C−1 when a new
row and column are added to the end of C, in time O(C2). We apply this procedure twice, first for
feature z′0 and then for z′1.
Note that we only need to update C−1, there is no need to maintain the matrix C itself.

(4) Given the updated inverse C−1, the ridge regression solution θMAP is

θMAP = C−1ZTtrainytrain

and can be computed in time O(CN) by bracketing the expression as θMAP = C−1(ZTtrainytrain).
(5) Given the updated ridge regression solution θMAP, predictions on the validation set and the resulting

RMSE can be easily computed in time O(CN).
We repeat steps (1)-(5) for each feature that is split into two non-empty features by the newly added cut.
If K is the number of such features, adding this cut takes O(K(C2 + CN)) time.

Decreasing a lifetime

Now suppose we want to decrease the lifetime along a dimension d and as a result a cut disappears from

the m-th grid in an interval (x̃
(d)
i−1, x̃

(d)
i ), for some m and i. At this stage all pairs of cells that have only

been separated by this cut need to be merged pairwise together. Thus the problem of decreasing the
lifetime decomposes into two parts:

(1) Determining which pairs of features should be merged.
(2) Merging (summing) those pairs of features and correspondingly updating the matrices Z, C−1, the

model predictions and the resulting validation set RMSE.
To solve (1), for each grid cell we maintain a pointer to both its neighbours in each of the D dimensions.
When a cut in dimension d is removed, for each cell we check whether it is this cut that separates it from
one of its neighbours in dimension d. If so, these two features are to be merged.

Once (1) is done, merging a pair of features can be performed simply by removing the two features
from Z and then appending a feature that equals their sum. We have already seen in the previous
subsection how Z, C−1 and the predictions can be efficiently updated in time O(C2 +CN) when features
are added or removed.
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5.2 Lifetime configuration exploration

In the previous section we have described how a regularization path can be traversed by efficiently
increasing or decreasing the lifetime in one dimension individually. However, our ultimate goal is to
discover a configuration of lifetimes λ = (λ1, . . . , λD) for the D input dimensions that works well for the
dataset at hand. As before, we split the dataset into a training set Dtrain = {(x1, y1), . . . , (xNtrain , yNtrain})
and a validation set Dval = {(xNtrain+1, yNtrain+1), . . . , (xN , yN )} and seek a configuration of lifetimes that
minimizes the RMSE on the validation set Dval of a model trained on Dtrain using this configuration.

We propose to use the Mondrian grid approximation, where evaluation of the validation set RMSE
for different lifetime configurations can be performed more efficiently than recomputing it for each con-
figuration individually. This is because having trained the model (computed the matrices Z and C−1) for
one lifetime configuration, moving to a neighbouring lifetime configuration can be done efficiently using
the methods described in the previous section.

To decide which lifetime configuration to explore next based on the history of already explored config-
urations, we need an optimization procedure. The following is a very simple local optimizer that greedily
increases the lifetime in the dimension that leads to lowest immediate RMSE on the validation set:

1: Save Z and C−1

2: for d = 1 to D do
3: cd ← first cut in dimension d with birth time strictly larger than λd
4: Z(d),C

−1
(d) ← updated matrices after adding the cut cd

5: ed ← error on the validation set from Z(d),C
−1
(d)

6: dmove ← argmin1≤d≤D ed
7: Z← Z(dmove), C−1 ← C−1

(dmove)
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Figure 5.3: Greedy optimization procedure on a toy 2D dataset, where all lifetime configurations can be
evaluated quickly. Nodes of the surface on the left show the validation set RMSE after a given number
of cuts has been added in each dimension. The nodes are joined together into a continuous surface
for clarity, but note that in fact the RMSE surface is piecewise constant with jumps only when a cut
is added/removed. The green line in the left figure shows the path taken by the greedy optimization
procedure, started from the origin λ = (0, 0) (with no cuts added in either dimension) in the top right
corner. The orange nodes show the lifetime configurations considered by the optimization procedure
for its next step. On this particular toy dataset the greedy optimizer manages to discover the global
minimum. The plot on the right plots the height of the green optimization path (validation set RMSE)
as a function of the number of optimization steps performed.
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Figure 5.4: Another toy dataset with two input dimensions, but this time the second dimension d = 2 is
irrelevant for predicting the target value. The greedy optimization procedure recognizes this and increases
the lifetime predominantly in the relevant dimension d = 1, as indicated by the green path on the left-
hand figure. However, due to randomness in the data, occasionally it also increases the lifetime in the
irrelevant dimension. As this greedy optimization procedure only increases lifetimes, such increase can
never be reverted in the future even it if would lead to lower validation set RMSE.

The toy experiment shown in Figure 5.4 suggests that the Mondrian grid approximator could also be
used for basic feature selection. After the optimization procedure discovers a good lifetime configuration
λ = (λ1, . . . , λD), a collection of predictive features (input dimensions d) can be obtained by selecting
those for which λd ≥ ε, where ε > 0 is some small threshold.
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Figure 5.5: Greedy optimization of Mondrian grid lifetimes on the real-world 3D Road Network dataset
[11] with D = 2 input dimensions. The left-hand plot shows development of validation set RMSE as the
optimization progresses and the right-hand plot shows the corresponding evolution of the lifetimes λ1,
λ2 of the two input dimensions. Note that for the training data size Ntrain = 10000 used here the cubic
running time of exact computation with the Laplace kernel would be prohibitive, especially if several
different lifetime configurations were to be tried out. The Mondrian grid approximation with our greedy
optimization procedure efficiently discovers a good lifetime configuration. (But note there is no guarantee
that it is globally optimal among all possible lifetime configurations.)
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Our greedy optimization procedure described above only considers adding cuts (increasing lifetimes).
However, in the previous section we have also explained how the lifetime in one of the dimensions can be
efficiently decreased by removing a cut. To see this procedure in action, we have implemented another
simple greedy optimization procedure that also considers removing a cut in each dimension individually
before deciding which neighboring configuration to explore next.
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Figure 5.6: Greedy optimization procedure on a toy 2D dataset, where the procedure is also allowed to
remove a cut (decrease the lifetime) if it leads to lower validation RMSE than any cut addition would.
A problematic aspect of this greedy optimizer is that it gets easily stuck in local minima.

5.3 Further work

There seems to be great room for improvement in the optimization procedure used for deciding which
lifetime configuration to explore next. We have implemented two greedy optimizers, one that increases
the lifetime in the dimension leading to lowest validation set RMSE and another that also considers
decreasing the lifetime. We can easily envision using more sophisticated local optimization algorithms for
finding minima of the validation set RMSE as a function of lifetime configuration. For example, instead of
looking one step ahead in each dimension, we could compute K > 1 steps in each direction before deciding
in which dimension to increase the lifetime. Another interesting method to try could be Simultaneous
Perturbation Stochastic Approximation (SPSA), which doesn’t require access to the gradient of the
optimized function and works even in presence of noise in the function measurements. The validation set
RMSE as a function of the lifetime configuration is not differentiable and the measurements we get are
noisy due to the noise in training and validation datasets.

Another approach we may take is to systematically model the validation RMSE as a random (un-
known) function by placing a prior distribution on it (e.g., a Gaussian process), treating the explored
lifetime configurations as (noisy) observations of this function and computing the posterior distribution
of the function. This posterior could then be used to guide our decision which lifetime configuration to
explore next.

To move between different lifetime configurations we have proposed making efficient updates to the
matrix C−1, the inverse of the regularized feature covariance matrix C = ZTZ + δ2IC . Instead of
working with matrix inverses directly it is often suggested for numerical stability reasons to work with
the Cholesky decomposition [12]. Even though we have not run into numerical issues in our experiments,
we outline how the Cholesky decomposition could be used in Appendix D.
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Selected proofs

A.1 Exponential distribution and exponential clocks

Proposition A.1. The expectation of the Exp(λ) distribution is 1
λ .

Proof. Integrating by parts,∫
R
xp(x|λ) dx =

∫ ∞
0

λxe−λx dx =

[
λx

1

−λ
e−λx

]∞
0

−
∫ ∞

0

λ
1

−λ
e−λx dx = 0 +

[
1

−λ
e−λx

]∞
0

=
1

λ

Proposition A.2. Let Z be any real-valued random variable that is a.s. non-negative and possesses the
lack of memory property, i.e.,

∀s ≥ 0, t ≥ 0 P(Z − t > s | Z > t) = P(Z > s)

Then Z ∼ Exp(λ) for some λ > 0.

Proof. Define G : [0,∞) → [0, 1] to be the tail function G(t) := P(Z > t). Then G is a decreasing
function with G(0) = 1 and the assumed lack of memory property gives us the functional equation

G(t+ s) = P(Z > t+ s) = P(Z − t > s|Z > t)P(Z > t) = P(Z > s)P(Z > t) = G(s)G(t)

for all s, t ≥ 0. The rest of the proof is concerned with solving this functional equation.
For n ∈ N we have G(nt) = G(t+ (n− 1)t) = G(t)G((n− 1)t), so by an easy inductive argument we

obtain G(nt) = G(t)n. As t is arbitrary here, we can take t = 1
n to get G(1) = G( 1

n )n. Noting that G is

a non-negative function, taking the n-th root gives G( 1
n ) = G(1)1/n for all natural n.

Suppose q = m
n ∈ Q, where m,n ∈ N. Then by the already established results

G(q) = G
(m
n

)
= G

(
m

1

n

)
= G

(
1

n

)m
= G(1)n/m = G(1)q

Now suppose z ∈ (0,∞). By elementary analysis, we can always find a sequence (qn) of rational numbers
in (0, z) approximating z from below (i.e. qn ↑ z as n→∞). As G is decreasing and limits preserve weak
inequalities,

G(z) ≤ lim
n→∞

G(qn) = lim
n→∞

G(1)qn = G(1)z

by continuity of the exponential. Similarly we can consider a sequence of rationals approximating z from
above to deduce the opposite inequality G(z) ≥ G(1)z. Hence G(z) = G(1)z for all z ∈ (0,∞).

It follows that G(1) > 0 (otherwise we’d contradict the assumption P(Z > 0) = 1) and we can define
λ = − lnG(1) > 0. Then for all z ≥ 0 we can write G(z) = e−µz and we see that indeed Z ∼ Exp(µ).

Lemma A.3 (Lack of memory property). Let Z be an exponential random variable and T an independent
nonnegative random variable. Then Z has the lack of memory property at the random time T , i.e.

∀u P(Z − T > u|Z > T ) = P(Z > u)

Proof. For negative u both sides evaluate to 1, so in the following we may assume u ≥ 0.
Let λ be the parameter (inverse mean) of the exponential Z. For any a ≥ 0 we have

P(Z > R+ a) =

∫ ∞
0

P(Z > T + a | Z = z)fZ(z) dz [ conditioning on Z ]

=

∫ ∞
0

P(T < z − a)fZ(z) dz [ independence of T and Z ]

=

∫ ∞
a

P(T < z − a)λe−λz dz [ T is non-negative and a ≥ 0 ]

=

∫ ∞
0

P(T < x)λe−λ(x+a) dx [ substitution x = z − a]

= e−λa
∫ ∞

0

P(T < x)fZ(x) dx

31
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Using this calculation with a = u and a = 0 we get as required,

P(Z − T > u | Z > T ) =
P(Z − T > u,Z > T )

P(Z > T )
=

P(Z − T > u)

P(Z − T > 0)
=
e−λu

e−λ0
= e−λu = P(Z > u)

Proposition A.4. Suppose X1, . . . , Xn are independent exponential random variables with rates (inverse
means) λ1, . . . , λn. Then minXi ∼ Exp(

∑
λi).

Proof. For any t ≥ 0 we have by independence of the Xis that

P(minXi > t) = P
(⋂
{Xi > t}

)
=
∏

P(Xi > t) =
∏

e−λit = exp
(
−t
∑

λi

)
and P(minXi > t) = 1 for t < 0, so indeed the minimum has the claimed distribution.

The case of two competing exponential clocks is treated by the following theorem. The statement is
taken from a problem sheet accompanying my Applied Probability course, the proof is my solution to
that question.

Theorem A.5 (Two competing exponential clocks). Let X and Y be independent exponential random
variables (competing exponential alarm clocks) with respective parameters λ and µ. Let

W = min{X,Y }, Z = max{X,Y }, O = Z −W, M = 1{X≤Y } =

{
1 if X ≤ Y
0 if X > Y

(a) Calculate P(W > s) and P(M = 1). Identify the distributions of W and M . Show that the events
{W > s} and {M = 1} are independent.

(b) Express the event {W ≤ w,M = 1, O ≤ t} in terms of X and Y and calculate its probability. What
is P(W ≤ w,M = 0, O ≤ t)? Show that W and (M,O) are independent.

Proof. (a) By Proposition A.4, W ∼ Exp(λ+ µ) and therefore P(W > s) = e−(λ+µ)s.
Conditioning on the value of X we have

P(X ≤ Y ) =

∫ ∞
0

P(X ≤ Y |X = x)fX(x) dx [conditioning on the value of X]

=

∫ ∞
0

P(Y ≥ x)λe−λx dx [by independence of X and Y ]

=
λ

λ+ µ
[since P(Y ≥ x) = e−µx]

so P(M = 1) = λ
λ+µ and P(M = 0) = 1− P(M = 1) = µ

λ+µ . In other words M ∼ Ber( λ
µ+λ ).

To show independence of the events {W > s} and {M = 1}, we just check that

P(W > s,M = 1) =

∫ ∞
0

P(min{X,Y } > s,X ≤ Y |X = x)fX(x) dx [conditioning on X]

=

∫ s

0

0 dx+

∫ ∞
s

P(Y ≥ x)λe−λx dx [independence of X,Y ]

=
λ

λ+ µ

(
1− e−(λ+µ)s

)
[as P(Y ≥ x) = e−µx]

= P(M = 1)P(W > s) [by above]

(b) By definition of our random variables

E := P(W ≤ w,M = 1, O ≤ t) = P(min{X,Y } ≤ w,X ≤ Y,max{X,Y } −min{X,Y } ≤ t)
= P(X ≤ w,X ≤ Y, Y −X ≤ t)
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Conditioning on the value of X (which has to lie in (0, w) if the event E is to occur),

P(E) =

∫ w

0

P(X ≤ Y, Y −X ≤ t|X = x)fX(x) dx [conditioning on the value of X]

=

∫ w

0

P(x ≤ Y ≤ x+ t)λe−λx dx [by independence of X and Y ]

=

∫ w

0

(
e−µx − e−µ(x+t)

)
λe−λx dx [as P(Y > a) = e−µa for a ≥ 0]

=
(
1− e−µt

) λ

λ+ µ

(
1− e−(λ+µ)w

)
Observe that if we repeated the same calculation with the roles of X and Y (and hence of λ and µ)
swapped, we’d be calculating the probability P(W ≤ w,M = 0, O ≤ t) and the result would be the same
except that λ and µ would be swapped). Defining α(0) = µ and α(1) = λ, our findings can be expressed
compactly as

P(W ≤ w,M = m,O ≤ t) =
α(m)

λ+ µ

(
1− e−α(1−m)t

)(
1− e−(λ+µ)w

)
For any w, t ≥ 0 and m ∈ {0, 1} we then get (recalling that W ∼ Exp(λ+ µ)),

P(W ∈ [0, w], (M,O) ∈ {m} × [0, t]) = P(W ≤ w,M = m,O ≤ t)

=

[
α(m)

λ+ µ

(
1− e−α(1−m)t

)] [
1− e−(λ+µ)w

]
= P(W <∞,M = m,O ≤ t)P(W ≤ w)

= P((M,O) ∈ {m} × {0, t})P(W ∈ [0, w])

As w, t,m were arbitrary, this is sufficient to conclude independence of W and (M,O).

A.2 Bayesian Gaussian model

Proposition A.6. Under the prior p(µ) = N (µ|µprior, σ
2
prior) and likelihood p(y|µ) = N (y|µ, σ2

noise), the
posterior after collecting N independent observations D = {y1, . . . , yn} is

p(µ|D) = N

(
µ |

ppriorµprior + pnoise
∑N
n=1 yn

pprior +Npnoise
, (pprior +Npnoise)

−1

)

where pprior = σ−2
prior and pnoise = σ−2

noise are the prior and noise precisions, respectively.

Proof. As the posterior distribution is known to be a probability distribution, it suffices to work up to
proportionality (∝) and normalize at the end:

p(µ|D) = p(µ)

N∏
n=1

p(yn|µ)

∝ exp

(
− (µ− µprior)

2

2σ2
prior

−
N∑
n=1

(yn − µ)2

2σ2
noise

)

∝ exp

{
−1

2

(
ppriorµ

2 − 2ppriorµµprior − 2pnoiseµ

N∑
n=1

yn + pnoiseNµ
2

)}

∝ exp

−pprior + pnoiseN

2

(
µ−

ppriorµprior + pnoise

∑N
n=1 yn

pprior +Npnoise

)2


∝ N

(
µ |

ppriorµprior + pnoise

∑N
n=1 yn

pprior +Npnoise
, (pprior +Npnoise)−1

)
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A.3 Poisson point process

Lemma A.7. Let Π be a Poisson point process on [a, b] with constant intensity λ. Conditionally given
that the process generated N = n points, their locations are i.i.d. uniform in [a, b].

Proof. We follow the proof given in [4]. Let A1, . . . , AK be a partition of [a, b] and let n1, . . . , nK be
integers with n1 + · · ·+ nk = n. Writing N(Ak) := |Π∩Ak| and m(Ak) for the Lebesgue measure of Ak,
we have by definition of conditional probability

P

(
K⋂
k=1

{N(Ak) = nk} | N = n

)
=

P
(⋂K

k=1{N(Ak) = nk}
)

P(N = n)

=

∏K
k=1 P(N(Ak) = nk)

P(N = n)
[ (ii) in Definition 1.8 ]

=

∏K
k=1 e

−λm(Ak) (λm(Ak))nk

nk!

e−λm([a,b]) λm([a,b])n

n!

[ (i) in Definition 1.8 ]

=

(
n

n1, . . . , nK

) K∏
k=1

(
m(Ak)

m([a, b])

)nk

[

K∑
k=1

m(Ak) = m([a, b]) ]

We recognize this as the multinomial distribution with unnormalized parametersm(A1), . . . ,m(AK). This
distribution can be represented as each point being independently assigned to region Ak with probability
m(Ak)
m([a,b]) , so the n points are (conditionally) independent. As the partition (A1, . . . , Ak) was arbitrary, the

distribution of the point locations is uniform.

A.4 Conditional Mondrians

Lemma A.8. Suppose we are conditionally given that the restriction MΦ of a Mondrian process M ∼
MP(λ,Θ) with lifetime λ ∈ [0,∞) to a smaller box Φ ⊆ Θ is trivial (contains no cuts). Then
• with probability exp(λ(LD(Θ)− LD(Φ)), M is also trivial
• with complementary probability 1− exp(λ(LD(Θ)−LD(Φ)) the first cut in Θ misses Φ, its time has

the truncated exponential distribution with rate LD(Θ) − LD(Φ) and truncation at λ, and the cut
location is uniformly distributed along the segments where making a cut doesn’t hit Φ.

Proof. Let T be the time of the first cut of M . By Bayes’ rule, its conditional distribution is

p(T = t |MΦ = ∅) =
p(T = t)

p(MΦ = ∅)
p(MΦ = ∅ | T = t)

By definition of the Mondrian process T ∼ Exp(LD(Θ)) and p(MΦ = ∅) = p(MP(λ,Φ) = ∅) = e−λLD(Φ)

using self-consistency. Finally, the probability that MΦ is empty given that the first cut in Θ occurs at
time t can be obtained as

p(MΦ = ∅ | T = t) = p(first cut misses Φ | T = t)p(MΦ = ∅ | T = t,first cut misses Φ)

=
LD(Θ)− LD(Φ)

LD(Θ)
p(MP(λ− t,Φ) = ∅)

=
LD(Θ)− LD(Φ)

LD(Θ)
e−(λ−t)LD(Φ)

where the second equality again uses self-consistency. Plugging into the Bayes’ formula

p(T = t |MΦ = ∅) =
LD(Θ) exp(−LD(Θ)t)

exp(−λLD(Φ))

LD(Θ)− LD(Φ)

LD(Θ)
e−(λ−t)LD(Φ)

= (LD(Θ)− LD(Φ)) exp (−(LD(Θ)− LD(Φ))t)
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We see that T | (MΦ = ∅) ∼ Exp(LD(Θ)− LD(Φ)). The probability that this time is within the lifetime
λ of the Mondrian is 1 − exp(λ(LD(Θ) − LD(Φ)) and conditionally on being within the lifetime, the
distribution becomes truncated at λ.

For brevity of notation, define the event A := {first cut of M occurs outside Φ at time T = t}. The
conditional distribution of the location X of the first cut is, using Bayes’ formula,

p(X = x |MΦ = ∅, A) =
p(X = x | A)

p(MΦ = ∅ | A)
p(MΦ = ∅ | X = x,A)

Given that the first cut occurs outside Φ, the density of its location is p(X = x | A) = (LD(Θ)−LD(Φ))−1.
By self-consistency p(MΦ = ∅ | X = x,A) does not depend on the value of x and therefore this probability
equals the denominator p(MΦ = ∅ | A). Hence

p(X = x |MΦ = ∅, A) = p(X = x | A) =
1

LD(Θ)− LD(Φ)

We see that as advertised, the conditional distribution of the cut location is uniform (among cut locations
that don’t split Φ).

A.5 Ridge regression

Theorem A.9. MAP parameter estimation of θ in the linear model

θ ∼ N (0, σ2
priorID)

y = θT x + ε where ε ∼ N (0, σ2
noise)

is equivalent to L2-regularized least-squares, i.e., to minimizing the function

f(θ) := δ2‖θ‖22 +

N∑
n=1

(yn − xTnθ)2

where δ := σnoise

σprior
.

Proof. The prior on θ can be written as

p(θ) = N (0, σ2
priorID) =

1

(2π)
D
2 |σ2

priorID|
1
2

exp

(
−1

2
θT (σ2

priorID)−1θ

)
=

1

(2πσ2
prior)

D
2

exp

(
− ‖θ‖

2
2

2σ2
prior

)
By independence of noise in different observations, the likelihood function of the observed data D as a
function of the parameter θ factorizes as

L(θ|D) = p(D|θ) =

N∏
n=1

p(yn|xn,θ) =

N∏
n=1

N (yn | xTnθ, σ2
noise) =

N∏
n=1

1√
2πσ2

noise

exp

(
− (yn − xTnθ)2

2σ2
noise

)
The posterior distribution p(θ|D) is proportional to the product of the prior p(θ) and the likelihood
L(θ|D). The MAP estimate of θ is obtained by maximizing this posterior, which is equivalent to mini-
mizing its negative likelihood:

− ln p(θ|D) = − ln p(θ)− lnL(θ|D) + const =
‖θ‖22

2σ2
prior

+

N∑
n=1

(yn − xTnθ)2

2σ2
noise

+ const

Multiplying this equation by the positive quantity 2σ2
noise > 0 and defining δ := σnoise

σprior
, we can equivalently

minimize the following function of θ:

f(θ) := δ2‖θ‖22 +

N∑
n=1

(yn − xTnθ)2

As advertised, this is the standard least squares minimization problem with an L2 regularization term.
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Theorem A.10. For δ > 0, the L2 regularized least squares objective function

f(θ) = δ2‖θ‖22 + ‖y −Xθ‖22

has a unique minimum at θ = (XTX + δ2ID)−1XTy.

Proof. Expanding the definition of f(θ) we obtain

f(θ) = δ2θTθ + (y −Xθ)T (y −Xθ)

= δ2θTθ + yTy − θTXTy − yTXθ + θTXTXθ [ distributivity ]

= const + δ2θTθ − 2yTXθ + θTXTXθ [ θTXTy and yTXθ are scalars ]

Having expressed f(θ) in terms of matrices, we now recall from matrix calculus that if A is a matrix

constant with respect to θ then ∂Aθ
∂θ = AT and ∂θTAθ

∂θ = 2ATθ. Therefore

∂f(θ)

∂θ
= 2δ2θ − 2XTy + 2XTXθ

Setting these partial derivatives (the gradient of f) to 0 yields the so-called normal equation

(XTX + δ2ID)θ = XTy

Observe that for any v ∈ RD \ {0} we have vT (XTX + δ2ID)v = ‖Xv‖22 + δ2‖v‖22 > 0, so the matrix
(XTX+δ2ID) is positive definite, therefore all its eigenvalues are positive and hence it is invertible. Thus
we can pre-multiply the normal equation by the inverse of this matrix to obtain an explicit form for the
location of this stationary point:

θ = (XTX + δ2ID)−1XTy

That this value of θ is a minimum of f can be confirmed by computing the Hessian matrix of second
derivatives H = 2δ2ID + 2XTX, which is easily seen to be positive definite. Hence f is strictly convex,
implying that the critical point of f found above must indeed be a unique global minimum.

Theorem A.11. The MAP estimate θMAP of the ridge regression parameter can be also expressed as

θMAP = XT (XXT + δ2IN )−1y

Proof. For the right-hand expression, we start by rewriting the normal equation from the proof of Theo-
rem A.10 as XTXθ + δ2θ = XTy; rearranging and dividing by the positive scalar δ2 > 0 then yields

θ = δ−2
(
XTy −XTXθ

)
= XT δ−2 (y −Xθ)

This still involves θ on the right-hand side, but we can obtain an expression for Xθ from the normal
equation: pre-multiplying it by X gives

XXTy = X(XTX + δ2ID)θ = XXTXθ + δ2Xθ = (XXT + δ2IN )Xθ

Arguing similarly as before, the matrix XXT + δ2IN is positive definite and therefore invertible for any
δ > 0, so we may write

θ = XT δ−2 (y −Xθ)

= XT δ−2
[
y − (XXT + δ2IN )−1XXTy

]
= XT δ−2

[
y − (XXT + δ2IN )−1(XXT + δ2IN )y + δ2(XXT + δ2IN )−1y

]
= XT (XXT + δ2IN )−1y

Note that we’ve used an ”add and subtract trick” to obtain the third equality.
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A.6 Updating matrix inverses

We start with a lemma showing how the inverse of a matrix A changes when the last row and column of
A are deleted. A more general case is deduced afterwards.

Lemma A.12. Let A ∈ Rn×n be invertible with inverse of the block form

A−1 =

[
E f
gT h

]
where E ∈ R(n−1)×(n−1), f ∈ Rn−1, g ∈ Rn−1 and h ∈ R. Let Ã be the matrix obtained from A by
deleting its last row and column. If h 6= 0 then Ã is invertible with inverse Ã−1 = E− fgT /h.

Proof. Write A =

[
Ã b
cT d

]
. As AA−1 = In, by properties of matrix multiplication

ÃE + bgT = In−1

Ãf + bh = 0

Dividing the second equality by the scalar h 6= 0 and solving for b gives b = −Ãf/h. Plugging this into
the first equality yields

In−1 = ÃE− ÃfgT /h = Ã
(
E− fgT /h

)
This proves that Ã is invertible and its inverse has the stated form.

Now we deduce a more general result, where it is the i-th row and i-th column of A that are deleted.

Definition A.13. Let σ be a permutation of {1, 2, . . . , n}. The permutation matrix Pσ ∈ Rn×n is the
monomial matrix with (i, j) entry equal to I(σ(i) = j).

Observe that for A ∈ Rn×n, pre-multiplication PσA permutes the rows of A using σ−1, while post-
multiplication APσ permutes the columns of A using σ. Note also that (Pσ)−1 = (Pσ)T = Pσ−1

.

Lemma A.14 (Inverse of a submatrix). Let A ∈ Rn×n be invertible, let 1 ≤ i ≤ n and let Ã be the
matrix obtained from A by deleting its i-th row and i-th column. Let E be the submatrix of A−1 obtained
by deleting its i-th row and column, let f be the i-th column of A−1 with the i-th entry removed, let g be
the i-th row of A−1 with the i-th entry removed, and finally let h be the (i, i) entry of A−1.
If h 6= 0 then Ã is invertible and its inverse is Ã−1 = E− fgT /h.

Proof. Using the cycle notation, define the permutation σ = (i i+ 1 · · · n). Note that the inverse of this
permutation σ−1 sends i to n. Let φ : Rn×n → R(n−1)×(n−1) be the function that deletes the last row
and last column of a matrix, and let ψ be the function that updates its inverse accordingly (as dictaded
by Lemma A.12), i.e. ψ(X−1) = φ(X)−1. Note that the matrix Ã can be equivalently obtained from
A by sending the i-th row and column to the last positions and then applying the function φ, so that
Ã = φ(PσAPσ−1

). Thus

Ã−1 = φ(PσAPσ−1

)−1 = ψ
(

(PσAPσ−1

)−1
)

= ψ
(
PσA−1Pσ−1

)
The right-hand side tells us that to compute Ã−1, we may move the i-th row and column of A to
the last positions and then apply the procedure ψ from Lemma A.12. But that yields precisely that
Ã−1 = E− fgT /h when h 6= 0.

The next lemma goes in the reverse direction, showing how the inverse changes when a new row and
column is appended to the original matrix.

Lemma A.15 (Inverse of an extended matrix). Let A ∈ Rn×n be invertible. For b ∈ Rn, c ∈ Rn and
d ∈ R, the extended matrix [

A b
cT d

]
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is invertible if and only if its Schur complement s := d− cTA−1b 6= 0, in which case the inverse is[
A b
cT d

]−1

=

[
E f
gT h

]
where

E = A−1 + s−1A−1bcTA−1 f = −s−1A−1b
g = −s−1cTA−1 h = s−1

This inverse can be computed from A−1 in time O(n2).

Proof. First suppose that s 6= 0. The stated forms for E, f , g, h could be derived from the equations[
A b
cT d

] [
E f
gT h

]
= In+1 and

[
E f
gT h

] [
A b
cT d

]
= In+1

but given that we have the forms stated, it suffices to verify that they do solve one of these two equations
(which then implies that the other is also satisfied). Indeed, for the first equation we have[

A b
cT d

] [
A−1 + s−1A−1bcTA−1 −s−1A−1b

−s−1cTA−1 s−1

]
=

[
In + s−1bcTA−1 − bs−1cTA−1 −s−1b + bs−1

cTA−1 + cT s−1A−1bcTA−1 − ds−1cTA−1 −cT s−1A−1b + ds−1

]
=

[
In 0
0T 1

]
= In+1

where the definition of the Schur complement s has been used to simplify the two terms in the bottom
row to get the last row.

Conversely, if the inverse matrix exists, then Af + bh = 0 and cT f + dh = 1. From the first
equality we obtain f = −A−1bh and plugging this into the second gives −cTA−1bh + dh = 1. Thus
s = −cTA−1b + d 6= 0, as required to prove the reverse direction of the claim.

Finally, suppose that A−1, b, c and d are known. Then s = d − cT (A−1b) can be computed in
time O(n2) and then h = s−1 is immediate. Also, f = −h(A−1b), then g = −h(cTA−1) and finally
E = A−1 − f(cTA−1) can all be computed in O(n2) time.



Model interpretation

In this report we have considered several different models for non-linear regression: Mondrian random
forest, kernel ridge regression and a Laplace kernel approximation using the Mondrian process. In this
chapter we show that under certain conditions all three models are so-called linear smoothers and hint
at what the fundamental difference between these models is.

Definition B.1. Let D = {(x1, y1), . . . , (xN , yN )} be a training dataset. A predictor ŷ for a new test
point x∗ is called a linear smoother if it can be expressed as a linear combination of the training
responses, i.e.,

ŷ =

N∑
n=1

ke(x∗, xn,X)yn

The coefficients ke(x∗, xn,X) are allowed to depend on the locations of all the training datapoints, but
not on their response values yn. The function ke is called the smoothing matrix or the equivalent
kernel [13].

Proposition B.2. Mondrian random forest regression is a linear smoother if and only if the prior
predictive distribution in the leaves N (µprior, σ

2
prior) has µprior = 0 or σ2

prior =∞ (no prior).

Proof. Let pprior := σ−2
prior be the prior precision and let pnoise be the observation noise. For 1 ≤ m ≤M ,

let lm(x) be the function that returns the leaf of the m-th Mondrian tree associated with the partition
cell into which points x falls. The prediction ŷ at a point x∗ can be expressed as

ŷ =
1

M

M∑
m=1

ppriorµprior + pnoise

∑N
n=1 I(lm(x∗) = lm(xn))yn

pprior + pnoise

∑N
k=1 I(lm(x∗) = lm(xk))

We see that the constant term not involving yn disappears if and only if µprior = 0 or pprior = 0 (no
prior). In that case the prediction is

ŷ =

N∑
n=1

yn
1

M

M∑
m=1

pnoiseI(lm(x∗) = lm(xn))

pprior + pnoise

∑N
k=1 I(lm(x∗) = lm(xk))

revealing a linear smoother with smoothing matrix

kMF
M (x∗, xn, X) =

1

M

M∑
m=1

I(lm(x∗) = lm(xn))
pprior
pnoise

+
∑N
k=1 I(lm(x∗) = lm(xk))

Remark. The M Mondrian trees of a Mondrian forest are sampled independently, so by the law of large
numbers, as M →∞, the obtained smoothing matrix converges at the standard rate to

kMF(x∗, xn, X) = E

[
I(lm(x∗) = lm(xn))

pprior
pnoise

+
∑N
k=1 I(lm(x∗) = lm(xk))

]

Ignoring the prior (setting pprior = 0), this quantity can be described as the expected proportion of the
n-th datapoint in the leaf containing the prediction point x∗. As we would expect, this is a quantity that
• is increased when the distance between x∗ and xn is small
• is decreased when there is a large number of training point in the vicinity of x∗

39
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Proposition B.3. Kernel ridge regression is a linear smoother for any valid kernel function k.

Proof. Expanding the prediction ŷ at a test point x∗ by writing k(x∗, X) for the row vector of length N
with n-th entry equal to k(x∗, xn),

ŷ = x∗θ

= k(x∗,X)(K + δ2IN )−1y

=

N∑
n=1

yn

N∑
i=1

k(x∗, xi)
(
(K + δ2IN )−1

)
in

We see that kernel ridge regression is a linear smoother with smoothing matrix

ke(x∗, xn,X) =

N∑
i=1

k(x∗, xi)
(
(K + δ2IN )−1

)
in

Remark. Interpreting the smoothing matrix of kernel ridge regression is made difficult by the presence
of the matrix inverse (K + δ2IN )−1.

B.1 Mondrian forest vs Laplace kernel approximation

We have presented two models for non-linear regression that utilize Mondrian trees: the Mondrian forest
regression model and the Mondrian approximation of the Laplace kernel. In both models we independently
sample M Mondrian trees with finite lifetime λ ≥ 0 and use them to obtain M independent partitions of
the datapoints X at hand.

However, the two models are also clearly different in some way. With Mondrian forest regression, the
prediction at a point x∗ is made by computing the prediction from each of the M trees independently
and then simply averaging them. There is no interaction between the different Mondrian trees. On the
other hand, with the Mondrian approximation of the Laplace kernel, we solve a ridge regression problem
to find a parameter vector θ. There can be non-trivial dependences between all entries of this vector,
including those corresponding to features produced by different Mondrian trees. Thus in this model, we
can have interaction between the different Mondrian trees.

The case M=1

In this subsection we show that under a slight condition, the two regression models coincide in the case
M = 1. We will write N(i) for the number of training datapoints falling into the i-th leaf of the single
Mondrian tree that is sampled.

Let us consider the Laplace kernel approximation model first. Recall that the ridge regression solution
can be expressed as

θ = (ZTZ + δ2IC)−1ZTy

where Z ∈ RN×C is the training data feature matrix, y are the training data targets and C is the number
of random features created. The prediction at a new test point z∗ is given by ŷ = θT z∗. In the case
M = 1 we have that
• Z ∈ RN×C is a binary matrix, with the n-th row containing precisely one non-zero entry znc,

indicating that the n-th datapoint falls into leaf c
• C = ZTZ + δ2IC ∈ RC×C has (i, j)-entry cij equal to, for i 6= j,

cij =
(
ZTZ

)
ij

+ δ20 =

N∑
n=1

zniznj =

N∑
n=1

0 = 0

and for i = j,

cii =
(
ZTZ

)
ii

+ δ21 =

N∑
n=1

znizni + δ2 =

N∑
n=1

zni + δ2 = N(i) + δ2

Thus C is a diagonal matrix, with i-th diagonal entry being the number of datapoints in the i-th
leaf, plus the δ2 regularization term.
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• C−1 ∈ RC×C as an inverse of a diagonal matrix is also diagonal, with i-th diagonal entry

c−1
ii =

1

N(i) + δ2

• ZTy ∈ RC has i-th entry αi equal to

αi =

N∑
n=1

zinyn

This is the sum of target values yn corresponding to datapoints that fall into leaf i.
• θ = C−1(ZTy) ∈ RC has i-th entry

θi = c−1
ii αi =

1

N(i) + δ2

N∑
n=1

zinyn

With δ = 0 this would be the average target value among datapoints in leaf i; with δ > 0 this can
be interpreted as having an additional observation of 0 with weight δ2.

• ŷ = θT z∗ ∈ R can, by letting c̃ be the leaf of the Mondrian tree into which z∗ falls, be expressed as

ŷ = θT z∗ =
∑
c=C

θcz∗c = θc̃ =
1

N(c̃) + δ2

N∑
n=1

z(c̃)nyn

Hence the prediction ŷ is simply the training average of targets in the leaf of the prediction location,
regularized by a δ2-weighted prior observation of 0.

This prediction ŷ is the same as the one made by the Mondrian forest regression model with a single
tree, provided that its hyperparameters are chosen compatibly with δ2: the prior predictive distribution
N (0, σ2

prior) must be zero-centered and together with the observation noise N (0, σ2
noise) they must satisfy

the relation
σ2

noise

σ2
prior

= δ2

This confirms that in the case M = 1, the Laplace kernel approximation approach coincides with the
Mondrian forest regression model with a zero-centered predictive prior and suitable hyperparameters.
Since we’ve shown that the former computes a random feature space in which the inner products have
expected values equal to the Laplace kernel, our model equivalence implies that the same is true of
Mondrian forest regression (with M = 1), which can therefore also be though of as an approximator for
the Laplace kernel.

The general case

In Mondrian forest regression, we sample M Mondrians in order to decrease the variance of the predic-
tions directly, by averaging the final predictions from M trees. This increases the probability that the
predictions will be closer to their expectation.

In Laplace kernel approximation using Mondrian trees, we sample the M Mondrians in order to
decrease the variance of the kernel approximation. This increases the probability that inner products in
the random feature space will better approximate the Laplace kernel.

Another way of thinking about the similarities and differences between these two models can be gained
by interpreting them as linear smoothers.

Linear smoothers

We’ve already seen that Mondrian forest regression is a linear smoother for any value of M , provided
that the predictive prior has mean zero. We’ve also seen that the kernel ridge regression model (with any
valid kernel) is also a linear smoother. Very similarly, it turns out that the Mondrian approximation of
the Laplace kernel is also a linear smoother, for any value of M .
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Proposition B.4. The Laplace kernel approximation using M Mondrian trees is a linear smoother.

Proof. Expanding the formula for the prediction ŷ at a new test point z∗,

ŷ = zT∗ θ

= zT∗ (ZTZ + δ2IC)−1ZTy

=

N∑
n=1

yn

C∑
c=1

z∗c

C∑
k=1

(ZTZ + δ2IC)−1
ck ZTkn

=

N∑
n=1

yn

C∑
c=1

z∗c

C∑
k=1

(ZTZ + δ2IC)−1
ck znk

We can read off the smoothing matrix ke(z∗, zn,Z) =
∑C
c=1 z∗c

∑C
k=1(ZTZ + δ2IC)−1

ck znk, but the
presence of the matrix inverse makes if difficult to analyse it in the general case (we’ve seen that for
M = 1 the inverted matrix is diagonal).

Now we can summarize the difference between Mondrian forest regression and Laplace kernel ap-
proximation as follows. In Laplace kernel approximation we use M independent Mondrian samples to
approximate the Laplace kernel. As the prediction is not a linear function of the kernel (it involves a ma-
trix inverse), the prediction doesn’t decompose with the M trees and therefore there can be a non-trivial
interaction between the different trees. On the other hand, Mondrian forest regression uses M inde-
pendent Mondrian samples to approximate the equivalent kernel kMF(x∗, xn,X) (the smoothing matrix).
The prediction ŷ is by definition a linear function of the equivalent kernel:

ŷ =

N∑
n=1

kMF(x∗, xn,X)yn

Hence for Mondrian forest regression, the prediction necessarily decomposes with the M Mondrian sam-
ples (there is no interaction between the different trees).



Density estimation

Definition C.1. The Beta distribution with shape parameters a, b > 0 has probability density function

p(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 0 ≤ x ≤ 1

where Γ(t) =
∫∞

0
zt−1e−z dz is the gamma function (a shifted generalization of the factorial function).

Proposition C.2. The expectation of the Beta(a, b) distribution is a
a+b .

Proof. The expectation can be calculated from definition:

E[Beta(a, b)] =

∫ 1

0

x
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 =

a

a+ b

∫ 1

0

Γ(a+ 1 + b)

Γ(a+ 1)Γ(b)
xa(1− x)b−1 =

a

a+ b

by recognizing the integral over the Beta(a+ 1, b) distribution which must evaluate to 1.

Density estimation differs from regression and classification in that it is an unsupervised problem, i.e.,
no labels are observed in training data.

Definition C.3. Density estimation is the problem of learning a probability density p from a set of
training samples D = {x1, . . . , xN} ⊆ RD generated from p. Given a new test point x∗, the learned
density p̂ estimates p̂(x∗) for the true density at point x∗.

A Mondrian random forest model for density estimation needs to be able to predict density values
in its leaves, noting that a probability density needs to integrate to 1. Following the approach taken for
classification, we use a hierarchical Bayesian model. In each sample of the Mondrian process, we associate
each node (not just the leaves) with an unknown probability mass, with the constraint that each non-leaf
node’s mass must equal the sum of masses associated with its two children. The prior distribution over
these masses is as follows:
• With probability 1, the root (of depth 0) is associated with a probability mass of 1.
• Say n is a non-leaf node of depth d, with associated probability mass Pn. Let c1, c2 be the children

of n and let V1, V2 be the volumes of the boxes in RD associated with c1 and c2. Under the prior,
the probability masses Pn1, Pn2 associated with the children are then assumed to be generated as
follows:

εn ∼ Beta

(
γ

V1

V1 + V2
(d+ 1)2, γ

V2

V1 + V2
(d+ 1)2

)
Pn1 = εnPn

Pn2 = (1− εn)Pn

Here γ > 0 is a hyperparameter of the prior to be chosen. Note that the two parameters of the Beta
distribution are proportional to the volumes V1, V2, so that the child of larger volume is more likely to
get a larger share of n’s associated probability mass Pn. Also, the sum of the two Beta parameters is
designed to be γ(d+ 1)2, in line with the Pólya tree prior distribution presented in [14] where this choice
leads to an a.s. absolutely continuous function in the limit d→∞.

As training data is added to the M Mondrian samples, the posterior distributions of εn can be
computed analytically thanks to Beta-Binomial conjugacy. Under the posterior distribution, a probability
mass Pn of node n is a product of independent Beta distributions, which doesn’t have a simple analytic
form, but its expectation can be easily computed. If n is in fact a leaf, we assume the mass Pn to
be uniformly distributed in the box associated with n. Note that this again requires knowledge of this
volume, if a density is to be predicted at point lying in n.

In regression and classification, the Mondrian samples are used only to partition the datapoints. In
our density estimation model we also require knowing the volumes of the partition cells generated by the
Mondrians. This proves to be a limiting factor for the computational performance of the model, since
self-consistency cannot be invoked as easily as in regression and classification: we need to know how
far individual partition cells extend, which might be far from any training data. We have explored two
possible solutions to this problem:

43



Matej Balog 44

(1) Identify a bounded box around the training data and assume that all probability mass lies in
that box. Within this box we instantiate the Mondrian samples completely, i.e. even in regions
containing no data points, since some of these cuts may still affect the volume of a box that is
non-empty.

(2) Rather than having an exact value for the volume of each box, we may compute its probability
distribution under the randomness stemming from not instantiating the Mondrian samples in regions
with no training data. Unfortunately, this distribution is somewhat more complicated than hoped:
we believe it to be the product of independent, truncated piecewise exponential distributions.



Cholesky decomposition

In the chapters on approximating the Laplace kernel we’ve proposed making efficient updates to the
matrix C−1, the inverse of the regularized covariance matrix C = ZTZ + δ2IC , to efficiently explore
the space of possible Laplace kernel lifetimes. Instead of working with this inverse directly, it is often
suggested for numerical stability reasons to work with the Cholesky decomposition [12]. In this section
we sketch how this can be achieved in our setting.

Definition D.1. Given a positive definite matrix C (i.e., vTCv > 0 for all v 6= 0), its Cholesky
decomposition is a factorization of the form C = LLT , where L is a lower-triangular matrix.

It is a standard linear algebra result that the Cholesky decomposition exists and is unique for positive
definite matrices.

Suppose first that the Cholesky decomposition C = LLT of the regularized covariance matrix C =
ZTZ+δ2IC is known. The normal equation of ridge regression then reads LLTθMAP = ZTy, which can be
solved in time O(C2) by performing two back-substitution passes. Indeed, we may define γ := LTθMAP,
solve the equation Lγ = ZTy using back-substitution (L is lower-triangular) and then solve the defining
relation of γ for θMAP using another back-substitution (LT is upper-triangular).

Thus if we can maintain the Cholesky decomposition of the regularized covariance matrix, we will be
able to efficiently compute the optimal ridge regression solution and hence the error on the validation set.
Now it remains to find a way of efficiently updating the Cholesky decomposition when the regularized
covariance matrix changes due to a change in lifetimes of the Laplace kernel being approximated.

First consider how the Cholesky decomposition can be efficiently updated when the matrix C is
extended, which happens when new features are created by adding a new cut into the Mondrian grid. As
the ordering of features doesn’t matter, we may assume that new features are appended as last columns
to the feature matrix Z. This means that we only need to consider extending C by a new last row and
column. The equation [

C a
aT b

]
=

[
E 0
cT d

] [
ET c
0 d

]
is equivalent to the system C = EET , a = Ec and cT c + d2 = b. Provided that we’ve maintained the
Cholesky decomposition of C, the first equation is solved by taking E = L. Then as E is lower-triangular,
we can solve for c in the second equation using back-substitution, and finally obtain d =

√
b− cT c from

the third equation, all in time O(C2).
It is significantly more challenging to update the Cholesky decomposition when a feature is removed,

which happens when a feature that has been split into two by a new cut needs to be removed. The
reason for the difficulty is that the removed feature need not correspond to the last row and column of
C, so updating the Cholesky decomposition is not simply a matter of deleting the corresponding row and
column from L. Instead, a two step procedure can be carried out [12]:

(1) Rotate the rows and columns of C so that those intended for deletion end up as the last row
and column. Update the Cholesky decomposition correspondingly, e.g. using the SCHEX [15]
subroutine from the LINPACK Fortran linear algebra package.

(2) Delete the last row and column of C, to which the corresponding update of L is simply to remove
its last row and column, as can be easily checked.

Both steps run in O(C2) time. This shows that the maintenance of the Cholesky decomposition C = LLT

can be performed with the same efficiency as the maintenance of the inverse C−1, so indeed we can work
with the Cholesky decomposition if so desired.

On the datasets considered we haven’t run into numerical stability issues while working with the matrix
inverse C−1 directly, so the approach using the Cholesky decomposition has not been implemented. Hence
we also omit a technical description of the SCHEX subroutine here.
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