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Converting to Optimization in Machine Learning:
Perturb-and-MAP, Differential Privacy, and

Program Synthesis

Matej Balog

On a mathematical level, most computational problems encountered in machine learning
are instances of one of four abstract, fundamental problems: sampling, integration,
optimization, and search. Thanks to the rich history of the respective mathematical
fields, disparate methods with different properties have been developed for these four
problem classes. As a result it can be beneficial to convert a problem from one abstract
class into a problem of a different class, because the latter might come with insights,
techniques, and algorithms well suited to the particular problem at hand. In particular,
this thesis contributes four new methods and generalizations of existing methods for
converting specific non-optimization machine learning tasks into optimization problems
with more appealing properties.

The first example is partition function estimation (an integration problem), where an
existing algorithm – the Gumbel trick – for converting to the MAP optimization problem
is generalized into a more general family of algorithms, such that other instances of this
family have better statistical properties. Second, this family of algorithms is further
generalized to another integration problem, the problem of estimating Rényi entropies.
The third example shows how an intractable sampling problem arising when wishing to
publicly release a database containing sensitive data in a safe (“differentially private”)
manner can be converted into an optimization problem using the theory of Reproducing
Kernel Hilbert Spaces. Finally, the fourth case study casts the challenging discrete
search problem of program synthesis from input-output examples as a supervised
learning task that can be efficiently tackled using gradient-based optimization.

In all four instances, the conversions result in novel algorithms with desirable
properties. In the first instance, new generalizations of the Gumbel trick can be used
to construct statistical estimators of the partition function that achieve the same
estimation error while using up to 40% fewer samples. The second instance shows that
unbiased estimators of the Rényi entropy can be constructed in the Perturb-and-MAP
framework. The main contribution of the third instance is theoretical: the conversion
shows that it is possible to construct an algorithm for releasing synthetic databases
that approximate databases containing sensitive data in a mathematically precise sense,
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and to prove results about their approximation errors. Finally, the fourth conversion
yields an algorithm for synthesising program source code from input-output examples
that is able to solve test problems 1-3 orders of magnitude faster than a wide range of
baselines.
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Chapter 1

Introduction

Machine learning has received an increasing amount of attention in recent years, partly
thanks to successful applications of deep learning (a subfield of machine learning, LeCun
et al., 2015) in disparate areas such as speech recognition (Hinton et al., 2012), computer
vision (Krizhevsky et al., 2012), natural language understanding (Mikolov et al., 2013)
and translation (Bahdanau et al., 2015), and many others. Breakthroughs in building
autonomous agents for games such as Atari (Mnih et al., 2015), Go (Silver et al., 2016)
and Starcraft (Vinyals et al., 2019) that match or even far surpass human performance
have fuelled renewed interest in the aspiration of building “human-imitative” (Jordan,
2019) artificial intelligence (AI), to the extent that the terms AI and machine learning
are nowadays sometimes conflated.

While some of the modern advances are due to the availability of larger datasets
and to the use of modern accelerator hardware such as GPUs (LeCun et al., 2015),
the aforementioned successes would not have been possible without having access to
methodology (principles, techniques, and algorithms) that had been developed many
years prior in a wide variety of fields including physics, mathematics, statistics, and
computer science, and which continues to be developed to the present day.

This thesis is an attempt at usefully contributing to machine learning methodology,
in the form of proposing new algorithms (new methods and generalizations of existing
methods) for solving four important tasks. The thesis recognizes that most subtasks
encountered within machine learning fall into one of four categories – integration,
sampling, optimization, and search – and the common aspect of the proposed algorithms
is that they convert specific non-optimization problems into optimization problems that
are in some sense easier to solve than the original problem. The four tasks addressed
in this thesis are (1) the integration problem of estimating normalizing constants
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of distributions, (2) the integration problem of estimating Rényi entropies, (3) the
sampling problem arising when wishing to release a database with sensitive data in a
differentially private manner, and (4) the search problem of automatic program source
code synthesis from an input-output example specification.

1.1 Non-technical Introduction

The purpose of this section is to explain the context and purpose of this thesis to a
non-technical audience. It can be safely skipped by experts.

Machine learning Machine learning is a scientific field on the boundary of computer
science and statistics. It is concerned with computational methods that attempt to
extract useful knowledge from data. A cartoon example of how this is different from
classical computer science is provided by the following task:

Build an algorithm that can be shown an image containing an apple or a
banana, and the algorithm responds with “apple” or “banana” depending on
which of the two is actually in the picture.

A non-machine-learning approach would come up with rules that the computer
can use to distinguish apples from bananas, based on our human understanding of
the differences between the two. For example, one might try using colour as such a
distinguishing rule, classifying the image as containing a banana if it contains a group
of yellow pixels next to each other. This can fail for a multitude of reasons, including
the fact that apples can also be yellow, or the yellow group of pixels could simply
be a table in the background. One might try to persevere and come up with better
distinguishing rules such as trying to recognize whether there is a round (apple) or an
elongated (banana) object in the picture, but again without a lot of care this can fail
due to camera angles or other objects occluding part of the fruit’s shape. The point is
that to build a reliable system in this way, one would have to:

1. think hard about the problem, and come up with more and more problem-specific
rules to cover different corner cases;

2. write computer code that implements the hand-designed rules. The more specific
a rule is to the problem at hand, the higher the chances that new complex
computer code needs to be written (as opposed to reusing an already existing
library).
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As a result, this approach comes with a high human cost – both in terms of mental
effort, and time spent developing new computer code.

The machine learning approach does away with much of this human cost, but the
price one needs to pay is data. In our example, one needs to collect a dataset of labelled
images of apples and bananas, i.e. a dataset where for each image it is known whether
it contains an apple, or a banana. (This does not solve our task yet, because we still
need to build an algorithm able to also classify images that are not part of this dataset.)
Supervised machine learning (currently the most widely applied subtype of machine
learning) essentially provides a generic recipe for automatically learning a classification
rule that works well on the labelled dataset. If set up well, this rule can then be also
applied to images for which the answer is not yet known, in order to predict it.

Probability distributions Since machine learning algorithms are built to make
predictions about unknown quantities, the language of probability plays an important
role. A basic concept in probability is that of a probability distribution. As a common
example from the everyday world, a fair die defines a probability distribution that
places probability 1

6 on each of the numbers 1, 2, 3, 4, 5, 6. However, the distributions
encountered in machine learning can be much more complicated than that – think of
an unfair die that is more likely to land on some side than others, and which instead
of 6 sides has millions, or even an infinite number of sides it can land on.

Fundamental problems Most machine learning algorithms can be viewed as con-
sisting of one or more building blocks, where each block is solving one of the following
four abstract, fundamental problems:

1. Integration: summing a large, or infinite list of numbers.
For example, estimating the sum of numbers written on each side of the die.

2. Sampling: obtaining a random sample from a given probability distribution.
For example, simulating a throw of the (possibly unfair) die.

3. Optimization: finding the maximum (highest point) of some function.
For example, finding the side of the die with the largest number.

4. Search: finding an element in a large set that satisfies some requirement.
For example, finding a solution to a Sudoku puzzle.
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Each of these tasks can be a very difficult problem in itself, generally because there
are too many elements to sum up (in integration), to choose from (in sampling), or to
consider (in optimization and search).

Conversions Remarkably, there are important cases where it is possible to “convert”
a problem of one of the four fundamental types into a problem of another type. For
example, when wishing to sample from a probability distribution it is possible to
convert the problem in such a way that instead it suffices to solve an optimization
problem. Such ability to convert between different types of problems can be useful, for
example because

• after conversion, the resulting new problem may have a special structure that
can be exploited by specialized algorithms for the new problem;

• by performing a conversion, one can unlock new trade-offs: we will see an example
where converting a sampling problem into an optimization problem allows trading
off computation time for accuracy, which means that if one cannot afford to wait
for the final result, it is possible to stop the algorithm early and extract a slightly
less accurate but still useful answer.

This thesis contributes four new ways (or generalizations of previously known ways) to
convert a specific non-optimization problem into an optimization problem.

1.2 Fundamental Problems

1.2.1 Optimization

Optimization refers to the general problem of finding an extremum (minimum or
maximum) of a scalar-valued function f : X → R∪{−∞,∞} on some domain X . The
following notation is common, stated here for maximization:

f ∗ = max
x∈X

f(x), x∗ = argmax
x∈X

f(x). (1.1)

A primary differentiator of optimization problems, and the mathematical field of
optimization as a whole, is whether the domain X is discrete or continuous.
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Discrete optimization On finite domains an optimization problem can be solved
trivially without any assumptions about f in O(|X |) steps by considering all domain
elements one by one. When |X | is prohibitively large or (countably) infinite, assump-
tions about f must be made, usually by relating its behaviour to an assumed structure
of X .

A type of structure particularly relevant for this thesis is a discrete graphical model,
representing the possible values of n random variables in an undirected graphical model
(see also Section 1.5.1):

• the domain factorizes as X = X1×· · ·×Xn, where each Xi represents the (discrete)
domain of variable i in the graphical model,

• a function f of interest is a potential function of the form f(x) = ∑
F ∈F ϕF (xF ),

where F is a collection of subsets of the variables {1, . . . , n}, also called factors.
(The factors correspond to maximal cliques in the graphical model.)

The potential function f of a graphical model defines its associated Gibbs probability
distribution p(x) ∝ exp (f(x)), and it’s easy to see that the problem of maximizing the
potential function f is equivalent to finding the maximum-probability configuration
under the Gibbs distribution. The latter problem is sometimes referred to as the MAP
(“maximum a posteriori”) problem, and it has been studied heavily in the literature (for
example, Boykov et al., 2001; Kolmogorov, 2006; Sontag et al., 2008). The algorithms
presented in Chapters 2 and 3 turn integration problems into this MAP problem and
then exploit existing MAP solvers.

Other types of assumptions on the function being optimized can be made. One
important notion is submodularity, which ordinarily encodes the intuitive notion that a
non-negative set function has the “diminishing returns” property as more items are
added into the set. In the context of discrete graphical models, a potential function
ϕF on XF := ∏

i∈F Xi is submodular if

∀yF , zF ∈ XF ϕF (yF ∧ zF ) + ϕF (yF ∨ zF ) ≤ ϕF (yF ) + ϕF (zF ), (1.2)

where ∧ and ∨ respectively denote elementwise minima and elementwise maxima across
variables in the factor F . Making such submodularity assumptions can lead to faster
algorithms including to the MAP problem (Darbon, 2009). The algorithms presented
in Chapters 2 and 3 have the property that they preserve submodularity properties of
the discrete graphical model (if the original discrete graphical model is submodular,
then so is the MAP problem generated by our conversion).
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Continuous optimization Although “continuous” here refers to the domain X being
continuous, one also at the very least assumes continuity of f , lest the optimization
problem become hopeless. In most applications the function f is in fact assumed
differentiable (at least once, almost everywhere), and its gradient ∇f is used to inform
the optimization process (a first-order, or gradient-based optimization method). When
the function is twice differentiable and computing with its Hessian (matrix of second
derivatives) is computationally tractable, such second-order methods can be very
effective (Dennis Jr and Schnabel, 1996).

A main differentiator within the field of continuous optimization however, is whether
the function f is convex, or not. While convex optimization was arguably (and
incorrectly) considered solved in the 1980s (Jordan, 2018), non-convex optimization
had been considered difficult. However, with revived interest in training (deep) neural
networks whose training loss functions virtually always fail to be convex, non-convex
optimization has gained prominence. Perhaps surprisingly, many techniques from
convex optimization such as the simple stochastic gradient descent (SGD) or accelerated
methods (Nesterov, 1983) have proven to be effective for training non-convex neural
networks as well.

Chapter 5 casts the program synthesis search problem as a supervised learning task,
and shows that it can be effectively tackled by training a neural network via standard
(non-convex) gradient-based optimization.

Bayesian optimization Although Bayesian optimization (Brochu et al., 2010;
Shahriari et al., 2015) is a method for both discrete and continuous optimization
problems, we mention it here separately thanks to its focus on optimizing expensive-
to-evaluate black-box functions, often without access to its derivatives. In the discrete
case this corresponds to the best arm identification problem (or pure exploration setting)
in Multi-Armed Bandits (MAB, Bubeck et al., 2009).

Chen and Ghahramani (2016) showed how to convert a large-scale sampling problem
into such a MAB problem using the Gumbel trick, and we also use this large-scale
setup in Section 2.5.2 to evaluate our new methods for partition function estimation.

1.2.2 Integration

In this thesis, an integration problem is the task of evaluating a definite integral

I :=
∫

A
f(x) dµ(x) (1.3)
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of a real-valued function f : A → R with respect to some measure µ on A. This
includes summation problems ∑x∈A f(x) on discrete domains A by taking µ to be the
counting measure on A. However, note that this is different from symbolic integration,
as we do not require that f has a closed-form anti-derivative.

Two primary sources of integration problems in machine learning are the needs of
(1) computing normalizing constants of unnormalized distributions, and (2) evaluating
expectations with respect to specific distributions.

Example 1 (Normalizing constants). In an undirected graphical model (see also
Section 1.5.1), the joint probability distribution is specified by a potential (negative
energy) function ϕ : X → [−∞,∞) through p(x) ∝ exp(ϕ(x)). Computing actual
probabilities requires obtaining the normalizing constant Z :=

∫
x exp(ϕ(x)) dx, which

is also called the partition function in this context and its estimation will be the focus
of Chapter 2.

Example 2 (Evaluating expectations). After computing a Bayesian posterior of
model parameters p(θ|x) given observed data x, one may wish to report the findings
by providing scalar summaries, such as expected values of θ-dependent quantities
(perhaps E[θ] itself).

Example 3 (Entropy estimation). An important property of any probability distri-
bution is the amount of uncertainty it encodes, which can be quantified by various
measures of entropy. The Shannon entropy of a discrete distribution p is given by
H1(p) := −∑x p(x) ln p(x) and the Rényi entropy with parameter α ∈ (0, 1) ∪ (1,∞)
is given by Hα(p) := 1

1−α
ln∑x p(x)α. Note that the former can be written as the

expectation Ep [− ln p(x)] with respect to the distribution p. The Rényi entropy can
be expressed as a transformed expectation Hα(p) = 1

1−α
lnEp [p(x)α−1], which will be

exploited in Chapter 3. See also Section 1.5.2 for important special cases of Rényi
entropies.

Perhaps the most common type of integration problem in Bayesian machine learning
is in fact both a normalizing constant evaluation problem, as well as an expectation
evaluation problem. After application of Bayes theorem to compute a posterior
distribution of interest,

p(θ|x) = p(x,θ)
p(x) = p(x|θ)p(θ)∫

θ p(x|θ)p(θ) dθ
, (1.4)
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the denominator (called model evidence) is both the normalizer of the joint distribution
p(x,θ) in the numerator, as well as the integral of the likelihood p(x|θ) with respect
to the prior p(θ).

The model evidence is useful for (Bayesian) model selection when multiple models
are under consideration. In particular, the ratio between two model evidences is called
a Bayes factor and can be used to compare two competing model hypotheses. The term
marginal likelihood is sometimes also used to refer to the model evidence, especially
when θ are latent (nuisance) variables, to be marginalized out. Optimizing the
marginal likelihood across a space of models indexed by continuous model parameters
is sometimes called model learning.

More generally, any marginalization problem of computing a distribution of a
set of variables yA from a joint distribution of yA and yB, leads to this type of
integration problem. Similarly, any type of probabilistic conditioning leads to such
a marginalization and thus integration problem through the definition of conditional
probability.

Example 4 (Counting problems). In a counting problem one wishes to count the
number of elements in a larger set Ω satisfying a given predicate P : Ω→ {true, false}.
This can also be seen as an integration problem by integrating the indicator function
1P of the predicate with respect to the counting measure on Ω. Valiant (1979) defined
the #P computational complexity class, comprising of counting problems where the
predicate P can be evaluated in polynomial time. For example, the problem of counting
the number of satisfying assignments to a given propositional formula is in #P. Note
that counting problems in #P are at least as hard as their corresponding decision
problems in NP, because it suffices to check whether the count is non-zero in order to
solve the decision problem. In fact, the class #P is believed (but not proved) to be
strictly harder than NP.

1.2.3 Sampling

A widespread use of sampling in machine learning is to perform Monte Carlo estimation
of expectations, which is in fact a prime example of a conversion from an integration
problem to sampling and will be discussed in Section 1.4.2. However, there are
interesting and important cases where the randomness provided by sampling is useful
in its own right; we list several relevant examples here.
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Stochastic gradient methods In supervised machine learning one tends to mini-
mize the (regularized) empirical risk on the training data, and if the empirical risk is
differentiable – as it is with, say, most neural networks – gradient-based optimization
methods are employed. However, instead of utilizing the exact gradient computed
across the full training data, often one only considers a noisy version of it in each
iteration by subsampling the training data (mini-batch gradient descent); in the extreme
case of stochastic gradient descent (Robbins and Monro, 1951) the gradient is computed
on a single, randomly chosen training data point.

However, the benefit of stochastic gradient methods lies not only in the computa-
tional cheapness of computing mini-batch gradients; there are also theoretical reasons
to prefer them over full-batch methods (Bottou et al., 2018). Moreover, the noise
present in the stochastic gradient is useful for finding minima of neural network loss
landscapes that have better generalization properties (Dziugaite and Roy, 2017; LeCun
et al., 2012).

In the i.i.d. setting this sampling problem is straightforward computationally, as
one only needs to sample uniformly from a set of tractable size (the number of data
points).

In Chapter 5 we use a more sophisticated variant of SGD called Adam (Kingma
and Ba, 2015) to perform gradient-based optimization of a neural network in order to
speed up a discrete search problem.

Differential privacy As machine learning solutions permeate everyday life, the
question of individual privacy is gaining importance. On one hand, it has been shown
that one can extract private information about training data points from a trained
neural network (Fredrikson et al., 2015). On the other hand, in areas such as medicine
strict regulations governing the use of individual data are already in place, but the
ability to (safely) apply machine learning approaches could lead to substantial leaps
in healthcare; e.g., better personalized treatment or cohort identification for clinical
trials (Dankar and El Emam, 2013).

Differential privacy (Dwork, 2006) has emerged as the leading formalization of
privacy that allows individuals to share their data in a way that allows quantifying
how much privacy they lose by doing so. The main idea behind differentially private
algorithms is that of addition of noise, which provides a form of plausible deniability to
the participating individuals (Dwork and Roth, 2014), as illustrated by the following
cartoon example.
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Example 5 (Randomized response). Suppose you want to find out the proportion
of people in a conference room that have tried narcotics in their life. Asking those
who have to raise their hand may underestimate the true value due to reluctance
towards admitting such behaviour. However, as the conductor of the experiment you
could first ask each person to discreetly throw a coin twice and remember the two
results. If the first throw landed heads, they should answer your question truthfully,
and otherwise they should randomize their answer according to the second coin toss.
This way, anyone raising their hand now has plausible deniability, but the fraction of
raised hands can still be used to estimate the true ratio with useful accuracy (Dwork
and Roth, 2014). Moreover, by replacing fair coin tosses with biased ones it is possible
to trade-off between the accuracy of this estimate and the privacy violation incurred
by each participant.

In Chapter 4 we consider the problem of publicly releasing an entire database
containing sensitive data, also known as offline differential privacy. To protect the
privacy of the data, the released dataset will be a noisy version of the original database.
A canonical algorithm for computing such a noised database, called SmallDB (Blum
et al., 2008), requires sampling a synthetic database from a specific distribution
supported on the set of all possible databases (with the same schema and size), which
is computationally intractable for all but the simplest cases. Chapter 4 shows how the
problem can be approached from a perspective of Reproducing Kernel Hilbert Spaces
and then converted into an optimization problem.

Exploration algorithms In bandit optimization (Bubeck et al., 2009) and reinforce-
ment learning (RL, Sutton and Barto, 1998) an agent interacts with an environment
and receives rewards. Since the distribution of rewards (and in the case of RL also
the dynamics of the environment) are unknown to the agent, it needs to explore the
environment to discover areas with high reward. Randomized exploration strategies
have been shown to be effective for achieving this goal. A well-known example is
Thompson sampling (Thompson, 1933) where one point is drawn from the distribution
encoding current beliefs of the agent about its environment, and the next action is
optimized with respect to this one sample. Thompson sampling also forms basis of
posterior sampling reinforcement learning (PSRL, Dearden et al., 1998), an exploration
strategy in RL.

Bandit optimization problems can also arise artificially; for example, Chen and
Ghahramani (2016) cast a large-scale discrete sampling problem as a bandit optimization
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problem using the Gumbel trick. We adapt this setup to partition function estimation
and use it to evaluate our new generalizations of the Gumbel trick in Section 2.5.2.

Other randomized algorithms Sampling is generally required in all randomized
algorithms. A specific problem type where randomized algorithms can be useful are
adversarial setups, where an online algorithm operates against an adaptive adversary
whose actions can depend on previous decisions of the algorithm. Intuitively, ran-
domization is helpful because the adversary at least cannot know the next action of
the algorithm. For example, the paging problem is the problem of deciding which
documents to keep in a fast cache of limited size in order to minimize the total number
of future cache misses. Fiat et al. (1991) showed that a randomized algorithm can
achieve a strictly better competitive ratio against the best possible offline algorithm
than any deterministic algorithm could.

1.2.4 Search

Classical AI “Classical” artificial intelligence (Russell and Norvig, 2016) as pursued
since the 1950s has focused on techniques using explicit knowledge representations,
logical reasoning, and planning. Examples of common problem formalizations were
graph problems, constraint satisfaction problems (CSPs), and games. These problems
were addressed through discrete or continuous search algorithms, a basic but well-known
example of which is A∗ search (Hart et al., 1968).

Program synthesis Even as researchers aspiring to development of artificial in-
telligence increasingly look towards statistical techniques, search problems are still
present in the machine learning domain. In fact, some believe that a key stepping
stone towards building intelligent agents can be achieved through progress in program
synthesis (Goodman et al., 2014, Section 7), and indeed program synthesis has been
considered a “holy grail of computer science” (Gulwani et al., 2017). In program
synthesis the task is to automatically construct program source code from a given
specification, such as input-output examples. The high-level idea is that an agent
released in an unknown environment should be able to learn the laws governing said
environment from interactions (inputs) and observations (outputs) in order to be able
to plan its future actions (Reed and De Freitas, 2016). While a similar goal is pursued
by the related field of program induction (Graves et al., 2014), where a neural network
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learns a program implicitly in its trainable weights, learning an explicit program has
several advantages:

1. a restricted programming language or a preference for shorter programs can
encode the useful inductive bias towards simpler laws of the world,

2. a program is interpretable by a human and can be assessed for correctness, and

3. it can be further modified and composed in transparent ways.

In fact, in recent years there has been renewed interest in combining symbolic reasoning
approaches with learning based systems in a symbiotic manner. An early example of
this type of modern neuro-symbolic approach is the work on guiding program synthesis
search using a trained neural network, which will be presented in Chapter 5.

Automated theorem proving A related area to program synthesis is that of
automated theorem proving, where the task is to automatically construct proofs of a
given mathematical statement by suitably combining a (large) set of given axioms and
lemmas. Similarly to program synthesis, approaches that combine symbolic search
with neural networks have been pursued (Alemi et al., 2016).

1.2.5 Other Fundamental Problems

There are other abstract tasks beyond optimization, integration, sampling, and search
that a machine learning algorithm might need to carry out. However, these tend
to be either easier or less common. The most prominent example is the task of
computing a derivative at a given point (differentiation), for which the Chain rule and
its more sophisticated use in the backpropagation algorithm (Kelley, 1960) provide an
efficient and deterministic solution that covers most use cases. Other examples of tasks
might include symbolic differentiation and symbolic integration, or solving differential
equations (Lample and Charton, 2020).

1.3 Conversions

Reductions and conversions Theoretical computer science and in particular the
study of formal models of computation and complexity theory rely heavily on the
notion of reductions, which are computable functions (algorithms) that transform one
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problem into another. A reduction f from a problem A to another problem B is
useful because it shows that the problem A is computationally no harder than the
combined computational complexity of problem B and of computing the reduction
f . For example, a Turing reduction (an arbitrary computable function) from an
undecidable problem A to another problem B proves that the latter is also undecidable.
Similarly, a polynomial-time reduction from an NP-hard problem A to another problem
B proves that the latter is also NP-hard.

This thesis focuses on problem transformations that translate between different types
of abstract fundamental problems discussed in the preceding Section 1.2. However, they
are not necessarily reductions in the formal sense, because in some cases the application
permits that the solution after applying the transformation is only approximate, or that
solving the transformed problem requires an additional resource type (such as data).
Hence, to avoid confusion, in this thesis we will use the term conversion (instead of
reduction) to describe the problem transformations considered. However, they do share
with formal reductions the notion of efficient computability, as we seek conversions
that are practically applicable.

Why conversions? A natural question to ask is why one should consider converting
between different problem types at all, if one is interested in solving them rather than
proving hardness results. Why is it not simpler to construct a solution within the
original problem type? Indeed, as expected we shall see that none of the existing
conversions discussed later in Section 1.4 are a silver bullet that would provide a general
performance gain on its own. However, the following list shows broad categories of
situations where a conversion to a different problem type can be beneficial (the first
three points are closely related to each other). After the high-level list, the specific
examples of the four conversions studied in this thesis are categorized. Section 1.4
then provides more examples of existing useful conversions within the field of machine
learning.

• Historical development
Although all of optimization, integration, sampling and search are well-studied
problems, none is considered completely solved, and researchers working on each
of these problems have had different perspectives, motivations, and backgrounds,
leading to some sub-types of these problem classes being better explored than
others. As a result, converting into a different problem type might map onto a
specific problem instance that has been more thoroughly studied.
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• Well-studied problem structure
The Gumbel trick and its generalizations presented in Chapters 2 and 3 not only
map onto the well-studied problem of finding the most likely configuration in a
discrete graphical model (an example of the previous point), the conversion is
such that it preserves submodularity properties of the discrete graphical model,
and as such makes it amenable to fast MAP solvers in common cases.

• Effectiveness of heuristics
The previous two points are especially relevant for heuristics, as different fields
have developed their own set of heuristics following their applications of interest.

• Unlocking new trade-offs
When designing machine learning solutions, one needs to take multiple types
of costs and constraints into account. Apart from the typical notions of (1)
computation time and (2) space (memory) that are ubiquitous in computer
science, these are also (3) sample (data) complexity, (4) statistical risk, (5)
privacy, (6) fairness, and possibly others. Converting to a different problem type
can unlock different types of trade-offs between these quantities.

• Implementation advantages and convenience
Converting into a different problem type could also be done for convenience or
availability of robust implementations. For example, when wishing to sample
from a trained RNN decoder outputting logits (unnormalized log probabilities), a
convenient way is to utilize the Gumbel trick, which in this case has the same time
and memory complexity as standard sampling but it is simpler to implement and
numerically more stable, because it does not require normalization of probabilities
and instead acts directly on the logits.

• New understanding
Finally, converting to a different problem type can lead to a better understanding
of the original problem. For example, rephrasing a problem as an optimization
problem using duality or the variational framework more generally, one can
consider perturbations of the derived optimization problem and study how they
affect the resulting solution (Jordan et al., 1999).

The conversions studied in this thesis tend to fall into multiple categories:

• The Gumbel trick (Papandreou and Yuille, 2011) and its generalizations presented
in Chapters 2 and 3 convert integration problems to the well-studied optimization
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problem of finding the MAP (most likely) configuration in a discrete graphical
model. However, they also introduce a new type of trade-off between computation
time and statistical accuracy, as they lead to stochastic approximation schemes.

• The work on differentially private database release via kernel mean embeddings
presented in Chapter 4 yields an optimization algorithm with the anytime property
and thus introduces a new trade-off between computation time and accuracy. The
original sampling problem would have a trade-off between computation time and
privacy, which would be useless if one wants to guarantee that a certain privacy
level is attained (which is indeed the point of differential privacy). Moreover, the
conversion allows utilizing any optimization heuristics on the generated reduced
set optimization problem (Schölkopf and Smola, 2002, Chapter 18).

• In Chapter 5, casting the discrete search in program synthesis as a supervised
learning task that can be solved using neural networks unlocks the ability to
exploit the efficiency of gradient-based optimization of neural network models
(which one might consider a heuristic for minimizing non-convex loss functions)
in order to solve an inherently discrete problem.

1.4 Examples of Conversions in Machine Learning

1.4.1 Conversions to Optimization Problems

Variational inference Variational methods, historically derived from the field of
calculus of variations (Lagrange, 1788), have entered machine learning through mean
field methods from statistical physics (Parisi, 1988). Variational methods have turned
out to be very successful within the formalism of graphical models (Jordan et al., 1999;
Wainwright and Jordan, 2008), where they provide a powerful paradigm for approximate
(variational) inference by rewriting an integration problem into an optimization problem.

In modern probabilistic machine learning one often posits a generative model
involving observed variables x (the data), latent variables z (to be inferred), and
model parameters θ (to be learned). The generative distribution can be described by a
directed graphical model, with edges indicating probabilistic dependencies (conditional
probability distributions). With such a probabilistic formulation it is natural to
take, at least partially, a Bayesian approach and work with posterior distributions
p(·|x), such as the joint posterior of all unobserved variables p(z,θ|x). However,
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commonly required operations such as sampling, marginalization, and evaluating
expectations (both examples of integration problems) under posterior distributions can
be computationally intractable, especially when there is a large number of unobserved
variables (Zhang et al., 2018).

Variational inference (Blei et al., 2017) takes the approach of defining a variational
family of probability distributions Q = {qλ : λ ∈ Λ}, parametrized by variational
parameters λ, such that (1) required operations are tractable for distributions in Q, (2)
Q is rich enough to approximate the posterior distribution of interest sufficiently well,
and (3) optimization over Q (or Λ) is tractable. The algorithmic crux of variational
inference is then to solve the optimization problem

q∗ ← argmin
q∈Q

D(p, q) = qargminλ∈Λ D(p,qλ), (1.5)

where p is the posterior of interest, and D(p, q) is a divergence measure between
distributions p and q (a non-negative function that equals 0 if and only if p = q).
The most common choice is the reverse Kullback-Leibler (KL) divergence D(p, q) =
KL(q∥p) =

∫
q ln p

q
, although other choices including Rényi α-divergences have also

been explored (Li and Turner, 2016).

Graph message passing algorithms (Loopy) belief propagation (Murphy et al.,
1999; Pearl, 1988) and Expectation maximization (EP) (Minka, 2001) are two examples
of approximate inference methods for graphical models that can be interpreted on
one hand as (1) message passing algorithms on the graph, but also as (2) solving an
optimization problem (although with EP the situation is more subtle, Bui et al., 2016).
Wainwright and Jordan (2008) thus argued that these methods should be seen as part
of the variational methods family, because they involve an optimization to approximate
a density of interest.

Perturb-and-MAP Perturb-and-MAP methods (Papandreou and Yuille, 2011) con-
stitute a class of randomized algorithms for converting the sampling problem, and
the problem of estimating normalizing constants (an integration problem) into the
optimization problem of finding a highest-probability configuration. The algorithms
operate by first randomly perturbing the target probability distribution and then
employing maximum a posteriori (MAP) solvers on the perturbed models to find
a maximum probability configuration, hence the name of the framework. As the
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random perturbations involve the Gumbel distribution (Gumbel, 1935), the framework
is sometimes also described as (utilizing) the Gumbel trick.

More specifically, Papandreou and Yuille (2011) first introduced the framework in
the context of discrete graphical models. Given a potential function ϕ : X → [−∞,∞)
defining the Gibbs distribution p(x) ∝ exp(ϕ(x)) on a finite state space X , the problem
of sampling p can be approached by adding an independent Gumbel perturbation to
each configuration’s potential, and then finding the highest-potential configuration.
Hazan and Jaakkola (2012) pointed out that such perturbations are useful not only
for sampling the Gibbs distribution (considering the argmax of the perturbed model),
but also for bounding and approximating the normalizing constant (by considering the
value of the max), which is also known as the partition function in this context. Later,
Maji et al. (2014) exploited the duality relationship between the partition function and
the Shannon entropy to construct perturb-and-MAP estimators of this entropy.

Although the resulting MAP problems are NP-hard in general, substantial research
effort has led to the development of solvers which can efficiently compute or estimate
the MAP solution on many problems that occur in practice (e.g., Boykov et al., 2001;
Darbon, 2009; Kolmogorov, 2006). Evaluating the partition function is a harder
problem, containing #P-hard counting problems.

Specific instances of the Perturb-and-MAP framework and their applications are
described in more detail in Section 2.1. Chapter 2 also introduces a generalization
of the Gumbel trick to a wider family of algorithms utilizing different perturbation
distributions, some of which have more favourable statistical properties when estimating
normalizing constants. Chapter 3 presents an extension of the Gumbel trick (and
also of the new tricks from Chapter 2) to a new integration problem, the problem of
estimating Rényi entropies.

Other partition function estimators via MAP calls Other methods that es-
timate the partition function of a discrete graphical model via MAP solver calls
include:

• The WISH method (weighted-integrals-and-sums-by-hashing, Ermon et al., 2013)
relies on repeated MAP inference calls applied to the model after subjecting it to
random hash constraints.

• The Frank-Wolfe method may be applied by iteratively updating marginals using
a constrained MAP solver and line search (Belanger et al., 2013; Krishnan et al.,
2015).
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• Weller and Jebara (2014a) used a single MAP call over a discretized mesh of
marginals to approximate the Bethe partition function, which itself is an estimate
of the true partition function.

Search by optimization Suppose one wants to find an element x ∈ X on a (finite
or infinite) search space X satisfying a predicate P : Ω → {true, false}. One can
trivially set up a maximization optimization problem x∗ ← argmaxx∈X 1P (x) that is
computationally equivalent to the original search problem. Naturally, such a refor-
mulation is not useful on its own, but can be made such through a relaxation – for
example, replacing 1P (x) with a smoother (e.g., differentiable) function Q : X → [0, 1]
that approximates 1P . The work presented in Chapter 5 can be seen as an instance
of this general approach, because a neural network is trained to make probabilistic
predictions about properties of the solution that is being searched for, and thus induces
a function Q on the search space of programs X that approximates the indicator 1P of
the predicate P .

Another type of relaxation is when the space X itself is extended, such as when X
is discrete but Q can be defined on a larger X ′ ⫌ X such that Q(x) is close to 1P (x)
on X , and Q is continuous on X ′. An instance of this is a search problem encoded as
an integer programming problem, which is in turn relaxed to linear programming by
elimination of integrality constraints on the variables.

1.4.2 Conversions in Other Directions

Although not a focus of this thesis, for completeness we provide three important
examples of conversions between fundamental problems that do not reduce to an
optimization problem, but instead go in different directions.

Integration to sampling Perhaps the most widely known conversion technique
of all is that of Monte Carlo sampling, where the integration problem of evaluating
a definite integral I :=

∫
f(x)p(x) dx with respect to a probability density p(x) is

converted into the problem of sampling points x1, . . . , xN from p or an approximation
thereof such that the quantity of interest can be approximated by Î := 1

N

∑N
n=1 f(xn).

Optimization to sampling Suppose one wishes to minimize a function f : X → R.
One can set up the problem of sampling a probability distribution p on X with density
pβ(x) proportional to exp(−βf(x)), where β > 0 is an inverse temperature parameter.
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As β is annealed to ∞, samples from pβ(x) will concentrate towards minima of f . This
classical technique is called simulated annealing.

Sampling to integration Sampling a structured probability distribution p(x1, . . . , xn)
on X = X1×· · ·×Xn, such as a discrete graphical model, can be performed much faster
if one can efficiently solve integration problems of evaluating marginals (and condition-
als). Specifically, one can sample X1 from the marginal distribution of p(x1) and then
for each i = 2, . . . , n sample Xi from the conditional distribution p(xi | x1, . . . , xi−1).
This brings down the computational complexity of sampling from O(|X |) (exponential
in n) to O(nmaxi |Xi|) (linear in n). A conversion of this type is used by Hazan et al.
(2013) in the Perturb-and-MAP framework, and also by us in Section 2.3.3.

1.5 Tasks Considered in This Thesis

This section introduces the specific tasks for which subsequent chapters of the thesis
present beneficial conversions to optimization problems.

1.5.1 Estimating Normalizing Constants

Given an unnormalized probability distribution, i.e. an unnormalized probability mass
function in the discrete case or an unnormalized density function in the continuous case,
denoted by p̃ : X → [0,∞), the task is to compute the normalization constant Z :=

∫
X p̃

(which corresponds to the summation Z := ∑
x∈X p̃(x) in the discrete case by considering

the counting measure on X ). Section 1.2.2 outlined how this integration problem
commonly arises in machine learning applications involving undirected graphical models,
Bayesian modelling, and marginalization or conditioning of probability distributions
more generally; these are all fundamental tools with ubiquitous applications.

Undirected graphical models The case of estimating normalizing constants of an
undirected graphical model will be of particular interest in Chapter 2 and Section 2.3
more specifically. Given an undirected graph G = (V,E) where the vertices V index
random variables X = {Xv | v ∈ V } taking values in X = ∏

v∈V Xv, an undirected
graphical model, also known as a Markov random field, is a probability distribution
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over X that factorizes along the cliques (maximal fully-connected subgraphs) of G:

p(x) = 1
Z

∏
C⊆V

a clique

ψC(xC), (x ∈ X ). (1.6)

Here xC := {xv | v ∈ C} and ψC : ∏v∈C Xv → [0,∞) describes the mutual compatibility
of assignments to random variables in the clique C. In this context, the scalar
normalizing constant Z is called the partition function. The term comes from statistical
physics, where the partition function describes how probability mass is partitioned
among possible microstates of a system depending on their energies. The non-negative
compatibility functions ψC can always be rewritten in exponential form to reveal what
is called a Gibbs distribution, or in finite-variable cases also the Boltzmann distribution:

p(x) = 1
Z

∏
C⊆V

a clique

ψC(xC) = 1
Z

exp

 ∑
C⊆V

a clique

ϕC(xC)

 = 1
Z

exp

− ∑
C⊆V

a clique

EC(xC)

 .
(1.7)

Here ϕ is called the potential function, and E the energy; they are related simply by a
sign change. Chapters 2 and 3 will be phrased in terms of the potential function ϕ(x) :=∑

C ϕC(xC), which one can recognize as simply the logarithm of the unnormalized
probability mass or density function: ϕ(x) = ln(Zp(x)).

Discrete graphical models The framework of undirected graphical models permits
both discrete and continuous random variables, or indeed a combination thereof.
Although the continuous case will be considered in Section 2.5.1, our focus will be on
the setting where all random variables Xi take values in finite sets Xi, in which case
we talk about discrete graphical models.

A canonical example of a discrete graphical model is an Ising model (Lenz, 1920),
again from statistical physics. It models a system of magnetic atoms, where each
can have a positive or negative spin: the variable Xi represents the spin of atom
i and takes values in {−1,+1}. Edges of the graphical model link adjacent atoms,
encoding that there is an interaction between them. In the case of an Ising model
the edges usually form a 2D or 3D lattice, and consequently all cliques consist of
just two vertices joined by an edge. The potential function thus consists of pairwise
potentials: ϕ(x) = ∑

e∈E ϕe(xe). Extensions include the addition of an external
magnetic field, which introduces unary potentials ϕv(xv) into the potential function,
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and the generalization to more than two spins, which is then called a Potts model (Potts,
1952).

Apart from widespread use in statistical physics, applications of discrete graphical
models in machine learning include Hopfield networks (Little, 1974) for simulating
an associative memory, and the general class of Boltzmann machines (Ackley et al.,
1985) including Restricted Boltzmann machines (RBM, Smolensky, 1986) and Deep
Boltzmann machines (DBM, Salakhutdinov and Hinton, 2009) whose addition of hidden
units (with values not observed during training) permits representation learning and
have been used for tasks such as collaborative filtering (Salakhutdinov et al., 2007),
classification (Larochelle and Bengio, 2008) and sequence modelling (Sutskever and
Hinton, 2007).

Computing the partition function of a discrete graphical model is in general equiva-
lent to computing a matrix permanent, which is a #P-hard problem (Valiant, 1979), a
computational complexity class that is believed to be even harder than NP.

1.5.2 Rényi Entropy Estimation

Entropies are measures of uncertainty in a probability distribution. The most commonly
used is the Shannon entropy (Shannon, 1948), defined by H1(p) := ∑

x∈X p(x) ln p(x).
The Shannon entropy possesses strong information-theoretic properties and its esti-
mation has found a wide array of applications within statistics (Goria et al., 2005),
machine learning (Learned-Miller and John III, 2003), as well as other fields (Porta
et al., 2001).

The Rényi entropy (Rényi, 1960) can be seen as a generalization of the Shannon
entropy into a continuous class of entropies parametrized by α ∈ [0,∞]. For α ∈
(0, 1) ∪ (1,∞) the α-Rényi entropy is given by Hα(p) := 1

1−α
ln∑x∈X p(x)α, and it is

extended to the boundary values via appropriate limits. This definition encompasses
and generalizes multiple measures of uncertainty with important roles in different fields:

• α = 0 is the Hartley entropy, related to the distribution’s support size;

• α = 1 is the Shannon entropy, the most widely used entropy measure;

• α = 2 is the collision entropy, equal to the negative logarithm of the probability
that two independent draws from the distribution coincide;

• α =∞ is the min-entropy.
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Section 3.2.1 provides more information on particular α-Rényi entropies.
Literature on entropy estimation usually assumes access to N samples x1, . . . , xN

iid∼
p from the unknown distribution p, and the task is to estimate the entropy of p
from these N points. In the perturb-and-MAP framework no samples from p are
assumed; instead, the distribution of interest is described by a potential function
ϕ : X → [−∞,∞), as in Section 1.5.1. Computing the entropy remains a challenging
problem in this setting because it amounts to computing an integral over the support of
p. Maji et al. (2014) exploited the duality relationship between the partition function
and the Shannon entropy to construct a perturb-and-MAP estimator of the Shannon
entropy based on the Gumbel trick. Chapter 3 shows how the perturb-and-MAP
framework (including both the Gumbel trick and the new tricks from Chapter 2) can
be cleanly extended to the integration problem of estimating Rényi entropies. The
relationship with the existing estimator of the Shannon entropy due to Maji et al.
(2014) is also discussed in detail.

1.5.3 Differentially Private Database Release

In Chapter 4 we are concerned with the following problem. Given a database of records
containing sensitive data (e.g., patient health records), the trustworthy curator of this
database wishes to release (some form of) this data to the public, so that

1. useful statistical inferences can be drawn from this data (e.g., relationships
between patient features and treatment outcomes), and

2. the data can be combined with other sources in order to unlock the potential
of large-scale machine learning approaches (e.g., combining health data from
different hospitals, regions, or countries).

This setting is sometimes called offline, or non-interactive differential privacy (Blum
et al., 2008; Dwork and Roth, 2014), because at the time of release it is not known
what kinds of statistical algorithms the public might wish to execute on the released
data. As a result, it is desirable to impose as few restriction as possible, and release
a version of the data that can be used to answer as large a diversity of queries as
accurately as possible, as long as the definition of differential privacy is satisfied.

This setup is different from most algorithms studied in differential privacy, which
are concerned with safely releasing a particular statistic of the sensitive data (e.g.,
the average glucose level among patients), or a particular statistical model trained
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on the sensitive data points (e.g., the weights of a linear regression model mapping
blood readings to life expectancy) (Chaudhuri et al., 2011; Rubinstein et al., 2012).
Intuitively, the offline setting is more difficult because the privatization step cannot be
specialized to the end-to-end application, but instead needs to support a variety of use
cases (Kowalczyk et al., 2018).

As discussed in Section 1.2.3, differential privacy is achievable by addition of suitable
noise during the release process. Chapter 4 shows how the intractable sampling problem
arising in the canonical offline differential privacy algorithm SmallDB (Blum et al.,
2008) can be replaced with the optimization problem of minimizing a distance in a
Reproducing Kernel Hilbert Space (RKHS, Smola et al., 2007). The output of these
algorithms is a noisy version of the original database, thus sometimes called a synthetic
database. It can be safely released to the public, because the post-processing theorem
of differential privacy (Dwork and Roth, 2014) ensures that no further computation
(without access to the private data) can undo the privacy guarantee of an object that
had been released in a differentially private manner.

1.5.4 Program Synthesis from Input-Output Examples

Program synthesis (Gulwani et al., 2017) is the task of synthesizing program source
code from a given specification. A prominent type of specification is a set of input-
output examples, in which case we can talk more specifically about programming
by example (Cypher and Halbert, 1993). Another kind of specification is a natural
language description of the desired functionality, in which case the task can be seen as
an instance of semantic parsing (Liang, 2016).

A successfully deployed instance of programming by example is FlashFill (Gulwani,
2011; Gulwani et al., 2012), which has shipped as a feature of Microsoft Excel permitting
users to obtain string-manipulation macros just by providing input-output examples
in two adjacent columns of the spreadsheet. For instance, if the first column of a
spreadsheet contains a list of person full names, and the user starts filling in the second
column with surnames, FlashFill can automatically synthesize a macro that performs
the extraction (assuming, say, that the surname is always the last token of the full
name) and offer to fill in the rest of the second column using this macro. Note that
the macro will be visible to the user, who can check it, modify it, and even learn from
it in order to improve their own macro writing abilities.

As program synthesis systems continue evolving, they hold promise at different
levels of application:



24 Introduction

1. First, they can usefully augment the “intelligence” of trained software engineers by
synthesizing repetitive or conceptually simple API manipulations for them, thus
increasing their productivity. An example of this would be AutoPandas (Bavishi
et al., 2019), a program synthesis system for the data science Python library
Pandas, which has a notoriously wide API.

2. Second, they can open up the world of programming to non-experts by facilitating
source code generation through them only providing input-output examples
or another type of specification. An early example of this is the FlashFill
system (Gulwani, 2011; Gulwani et al., 2012) described above.

3. Third, autonomous agents operating in unknown environments can formulate
interpretable, generalizable, and compositional laws (in the form of computer
programs) governing their environment from interaction observations using tech-
niques from program synthesis (Goodman et al., 2014).

Chapter 5 presents a methodological advancement on the task of program synthesis
from an input-output specification, showing how prior success in deep learning can
be exploited in this domain. The discrete search problem of identifying a program
matching the specification is cast as a supervised learning task that can be effectively
attacked using deep neural networks and gradient-based optimization. Although
we only consider synthesizing simple integer list-manipulation programs with basic
arithmetic in this work, combining predictions of the trained neural network with
existing symbolic search techniques already leads to orders of magnitude speed-ups in
terms of wall clock time.

1.6 Contributions and Thesis Organization

In the abstract context of converting non-optimization machine learning tasks to
optimization problems, the main contributions of this thesis are:

1. A generalization of an existing method to convert partition function estimation
(an integration problem) into an optimization problem, which leads to novel
conversions that achieve lower statistical error at the same computational cost.
(Chapter 2)

2. An extension of the aforementioned methods to the integration problem of
estimating Rényi entropies. (Chapter 3)
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3. A novel algorithm for differentially private release of a database containing
sensitive data, based on the theory of Reproducing Kernel Hilbert Spaces. Com-
putationally, the resulting algorithm can be viewed as replacing an intractable
sampling problem by an optimization procedure that can be stopped early, thus
yielding a more practical anytime algorithm. (Chapter 4)

4. Learning Inductive Program Synthesis (LIPS), a formulation of program synthesis
from input-output examples that allows exploiting gradient-based optimization
for accelerating a discrete search task. (Chapter 5)

In all four cases, the contribution yields an algorithm with previously unattainable
properties: in Chapter 2 this is up to 40% higher statistical efficiency, in Chapter 3
an unbiased Perturb-and-MAP estimator of Rényi entropies, in Chapter 4 a novel
synthetic database algorithm with provable mathematical guarantees, and in Chapter 5
a computational speedup of 1-3 orders of magnitude. These instances corroborate the
thesis that conversions between different abstract problem types can be beneficial for
deriving useful algorithms and theoretical results.

The material presented in Chapters 2, 4 and 5 is based on work presented in the
following peer-reviewed publications, respectively:

• Lost Relatives of the Gumbel Trick
Matej Balog, Nilesh Tripuraneni, Zoubin Ghahramani, Adrian Weller
ICML 2017, Sydney, Australia (Balog et al., 2017b)

• Differentially Private Database Release via Kernel Mean Embeddings
Matej Balog, Ilya Tolstikhin, Bernhard Schölkopf
ICML 2018, Stockholm, Sweden (Balog et al., 2018)

• DeepCoder: Learning to Write Programs
Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel
Tarlow
ICLR 2017, Toulon, France (Balog et al., 2017a)

These publications resulted from very enjoyable collaborations with the listed co-
authors. In all three cases, the author of this thesis was the only “first” author on the
publication.
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Thesis organization As the case studies presented in this thesis are linked by the
abstract philosophical notion of converting non-optimization tasks to optimization
problems rather than by a single common technique or application domain, more
detailed background and related work beyond what was already discussed in Sections 1.4
and 1.5 is provided at the beginning of each respective chapter 2, 3, 4, and 5. Each
chapter then presents its algorithmic contribution, with corresponding mathematical
and/or experimental analysis. In an attempt to increase transparency of presentation,
some technical details that can be abstracted away on first reading, such as technical
proofs and details of experimental setups, are postponed into Appendices A, B, C,
and D. The chapters conclude with discussions of future directions – both those that
have already been undertaken since first publication, and those that still remain open.

1.7 Other PhD Work

During my PhD I’ve attempted to build a network of research collaborations, which has
fortunately resulted in more scientific work that is not included in this thesis, primarily
due to space limitations. Some of this work also has a less direct connection to the
overarching theme of conversions to optimization problems, although all of them do
share the aspect of setting up an (auxiliary) optimization problem in order to solve
the target task of interest.

• Neural grammar learning (2017)
with Alex Polozov and Rishabh Singh
We were addressing the problem of discovering rules of a (formal) grammar that
governs utterances in a given dataset. The target application was fuzzing: given
a set of valid inputs for a program binary, can we discover a grammar describing
valid inputs, so as to be able to generate new inputs and test that the binary
does not crash on them?
Similarly to DeepCoder, the work described in Chapter 5, we approached this
discrete search problem by setting up a supervised learning task and used gradient-
based optimization to learn a neural network that consumes a set of utterances
and predicts the grammar rules in the form of a regular expression.

• Fast training of sparse graph neural networks on dense hardware (2019)
with Bart van Merriënboer, Subhodeep Moitra, Yujia Li, Daniel Tarlow
With sparse graph neural networks (GNNs) emerging as strong encoder models
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for program source code (Allamanis et al., 2018), and the simultaneous rise in
popularity of “AI accelerators” (such as Google’s TPUs, Hennessy and Patterson,
2019) focused on fast multiplication of dense matrices, we explored the question
whether committing to such hardware necessarily prevents accelerating models
requiring sparse operations (such as a pre-multiplication by a large, sparse graph
adjacency matrix as in the case of sparse GNNs). We approached the problem
by thinking in terms of an abstract virtual machine that supports operations
that are fast on “AI accelerators” (i.e. dense matrix multiplies) and designed a
compilation step that expresses the sparse operations required by a sparse GNN
in terms of operations supported by the virtual machine. The introduction of
the compilation step can be seen as an addition of an auxiliary optimization task
to speed up a target optimization task of interest.

• Towards program synthesis in latent space (2019)
with Rishabh Singh, Petros Maniatis, Charles Sutton
As discussed in detail in Section 5.7.1, the DeepCoder work left many avenues
open for further improvement. In this project we have explored some of those,
attempting to learn a latent space representation of computer programs that could
be more tightly coupled with a search procedure looking for a program matching
an input-output specification. This work continues in the spirit of DeepCoder to
speed up a discrete search procedure through gradient-based optimization.





Chapter 2

Partition Function Estimation

Chapter abstract The Gumbel trick is a method to sample from a discrete proba-
bility distribution, or to estimate its normalizing partition function. The method relies
on repeatedly applying a random perturbation to the distribution in a particular way,
each time solving for the most likely configuration. We derive an entire family of related
methods, of which the Gumbel trick is one member, and show that the new methods
have superior properties in several settings with minimal additional computational
cost. In particular, for the Gumbel trick to yield computational benefits for discrete
graphical models, Gumbel perturbations on all configurations are typically replaced
with so-called low-rank perturbations. We show how a subfamily of our new methods
adapts to this setting, proving new upper and lower bounds on the log partition function
and deriving a family of sequential samplers for the Gibbs distribution. Finally, we
balance the discussion by showing how the simpler analytical form of the Gumbel trick
enables additional theoretical results.

2.1 Introduction

In this chapter we are concerned with the fundamental problem of sampling from a
discrete probability distribution and evaluating its normalizing constant, the setup
introduced in Section 1.5.1: a probability distribution p on a discrete sample space
X is provided in terms of its potential function ϕ : X → [−∞,∞), corresponding to
log-unnormalized probabilities via p(x) = eϕ(x)/Z, where the normalizing constant Z is
the partition function. In this context, p is the Gibbs distribution on X associated with
the potential function ϕ. The challenges of sampling from such a discrete probability
distribution and estimating the partition function are fundamental problems with
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ubiquitous applications in machine learning, classical statistics and statistical physics
(see, e.g., Lauritzen, 1996).

Perturb-and-MAP methods (Papandreou and Yuille, 2010) constitute a class of
randomized algorithms for estimating partition functions and sampling from Gibbs
distributions, which operate by randomly perturbing the corresponding potential
functions and employing maximum a posteriori (MAP) solvers on the perturbed models
to find a maximum probability configuration. This MAP problem is NP-hard in general;
however, substantial research effort has led to the development of solvers which can
efficiently compute or estimate the MAP solution on many problems that occur in
practice (e.g., Boykov et al., 2001; Darbon, 2009; Kolmogorov, 2006). The general aim
of perturb-and-MAP methods is to reduce the problem of partition function evaluation,
or the problem of sampling from the Gibbs distribution, to repeated instances of the
MAP problem (where each instance is on a different random perturbation of the original
model).

The Gumbel trick (Papandreou and Yuille, 2011) relies on adding Gumbel-distributed
noise to each configuration’s potential ϕ(x). We derive a wider family of perturb-
and-MAP methods that can be seen as perturbing the model in different ways – in
particular using the Weibull and Fréchet distributions alongside the Gumbel. We show
that the new methods can be implemented with essentially no additional computational
cost by simply averaging existing Gumbel MAP perturbations in different spaces, and
that they can lead to more accurate estimators of the partition function.

Evaluating or perturbing each configuration’s potential with i.i.d. Gumbel noise
can be computationally expensive. One way to mitigate this is to cleverly prune
computation in regions where the maximum perturbed potential is unlikely to be found
(Chen and Ghahramani, 2016; Maddison et al., 2014). Another approach exploits
the product structure of the sample space in discrete graphical models, replacing
i.i.d. Gumbel noise with a “low-rank” approximation. Hazan and Jaakkola (2012);
Hazan et al. (2013) showed that from such an approximation, upper and lower bounds
on the partition function and a sequential sampler for the Gibbs distribution can still
be recovered. We show that a subfamily of our new methods, consisting of Fréchet,
Exponential and Weibull tricks, can also be used with low-rank perturbations, and use
these tricks to derive new upper and lower bounds on the partition function, and to
construct new sequential samplers for the Gibbs distribution.
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Our main contributions are as follows:

1. A family of tricks that can be implemented by simply averaging Gumbel pertur-
bations in different spaces, and which can lead to more accurate or more sample
efficient estimators of Z (Section 2.2).

2. New upper and lower bounds on the partition function of a discrete graphical model
computable using low-rank perturbations, and a corresponding family of sequential
samplers for the Gibbs distribution (Section 2.3).

3. Discussion of advantages of the simpler analytical form of the Gumbel trick including
new links between the errors of estimating Z, sampling, and entropy estimation
using low-rank Gumbel perturbations (Section 2.4).

Background and Related work The idea of perturbing the potential function of a
discrete graphical model in order to sample from its associated Gibbs distribution was
introduced by Papandreou and Yuille (2011), inspired by their previous work on reducing
the sampling problem for Gaussian Markov random fields to the problem of finding
the mean, using independent local perturbations of each Gaussian factor (Papandreou
and Yuille, 2010). Tarlow et al. (2012) extended this perturb-and-MAP approach to
sampling, in particular by considering more general structured prediction problems.
Hazan and Jaakkola (2012) pointed out that MAP perturbations are useful not only
for sampling the Gibbs distribution (considering the argmax of the perturbed model),
but also for bounding and approximating the partition function (by considering the
value of the max).

Afterwards, Hazan et al. (2013) derived new lower bounds on the partition function
and proposed a new sampler for the Gibbs distribution that samples variables of a
discrete graphical model sequentially, using expected values of low-rank MAP pertur-
bations to construct the conditional probabilities. Due to the low-rank approximation,
this algorithm has the option to reject a sample. Orabona et al. (2014) and Hazan et al.
(2019) subsequently derived measure concentration results for the Gumbel distribution
that can be used to control the rejection probability. Maji et al. (2014) derived an
uncertainty measure from random MAP perturbations, using it within a Bayesian
active learning framework for interactive image boundary annotation. The four last
cited publications have been recently synthesized into a journal article (Hazan et al.,
2019).
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Perturb-and-MAP was famously generalized to continuous spaces by Maddison
et al. (2014), replacing the Gumbel distribution with a Gumbel process and calling
the resulting algorithm A* sampling. Maddison (2016) cast this work into a unified
framework together with adaptive rejection sampling techniques, based on the notion
of exponential races. This view generally brings together perturb-and-MAP and
accept-reject samplers, exploiting the connection between the Gumbel distribution and
competing exponential clocks that we also discuss in Section 2.2.1.

Inspired by A* sampling, Kim et al. (2016) proposed an exact sampler for discrete
graphical models based on lazily-instantiated random perturbations, which uses linear
programming relaxations to prune the optimization space. Further applications of
perturb-and-MAP include structured prediction in computer vision (Bertasius et al.,
2017) and turning the discrete sampling problem into an optimization task that can be
cast as a multi-armed bandit problem (Chen and Ghahramani, 2016), see Section 2.5.2
below.

In addition to perturb-and-MAP methods, we are aware of three other approaches
to estimate the partition function of a discrete graphical model via MAP solver calls,
and we listed them in Section 1.4.1. These are the WISH method (weighted-integrals-
and-sums-by-hashing, Ermon et al., 2013) using MAP calls on models subjected to
random hash constraints, the Frank-Wolfe method that iteratively updates marginals
using a constrained MAP solver and line search (Belanger et al., 2013; Krishnan et al.,
2015), and finally the approach of Weller and Jebara (2014a) using a single MAP call
over a discretized mesh of marginals to approximate the Bethe partition function, an
approximation of the true partition function.

2.2 Relatives of the Gumbel Trick

In this section, we review the Gumbel trick and state the mechanism by which it can be
generalized into an entire family of tricks. We show how these tricks can equivalently
be viewed as averaging standard Gumbel perturbations in different spaces, instantiate
several examples, and compare the various tricks’ properties.

Notation Throughout this chapter, let X be a finite sample space of size N := |X |.
Let p̃ : X → [0,∞) be an unnormalized mass function over X and let Z := ∑

x∈X p̃(x)
be its normalizing partition function. Write p(x) := p̃(x)/Z for the normalized version
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of p̃, and ϕ(x) := ln p̃(x) for the log-unnormalized probabilities, i.e. the potential
function.

We write Exp(λ) for the exponential distribution with rate (inverse mean) λ and
Gumbel(µ) for the Gumbel distribution with location µ and scale 1. The latter has
mean µ+ c, where c := −

∫∞
0 e−t ln t dt ≈ 0.5772 is the Euler-Mascheroni constant.

2.2.1 The Gumbel Trick

Similarly to the connection between the Gumbel trick and the Poisson process estab-
lished by Maddison (2016), we introduce the Gumbel trick for discrete probability
distributions using a simple and elegant construction via competing exponential clocks.
Imagine N independent clocks, started simultaneously, such that the j-th clock rings
after a random time Tj ∼ Exp(λj). Then it is easy to show that (1) the time minj{Tj}
until some clock rings has Exp(∑N

j=1 λj) distribution, and (2) the probability of the
j-th clock ringing first is proportional to its rate λj . These properties of the exponential
distribution are also widely used in survival analysis (Cox and Oakes, 1984).

Consider N competing exponential clocks {Tx}x∈X , indexed by elements of the
domain X , with respective rates set to the unnormalized probabilities λx = p̃(x).
Property (1) of competing exponential clocks tells us that

min
x∈X
{Tx} ∼ Exp(Z). (2.1)

Property (2) says that the random variable argminx Tx, taking values in X , is distributed
according to p:

argmin
x∈X

{Tx} ∼ p. (2.2)

The Gumbel trick is obtained by applying the function g(x) = − ln x−c to the equalities
in distribution (2.1) and (2.2). When g is applied to an Exp(λ) random variable, the
result follows the Gumbel(−c + ln λ) distribution, which can also be represented as
ln λ+ γ, where γ ∼ Gumbel(−c). Defining {γ(x)}x∈X

iid∼ Gumbel(−c) and noting that
g is strictly decreasing, applying the function g to equalities in distribution (2.1) and
(2.2), we obtain:

max
x∈X
{ϕ(x) + γ(x)} ∼ Gumbel(−c+ lnZ), (2.1’)

argmax
x∈X

{ϕ(x) + γ(x)} ∼ p, (2.2’)
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where we have recalled that ϕ(x) = ln λx = ln p̃(x). The distribution Gumbel(−c+lnZ)
has mean lnZ, and thus the log partition function can be estimated by averaging
samples (Hazan and Jaakkola, 2012).

2.2.2 Constructing New Tricks

Given the equality in distribution (2.1), we can treat the problem of estimating the
partition function Z as a parameter estimation problem for the exponential distribution.
Applying the function g(x) = − ln x− c as in the Gumbel trick to obtain a random
variable distributed as Gumbel(−c + lnZ), and estimating its mean to obtain an
unbiased estimator of lnZ, is just one way of inferring information about Z.

We consider applying different functions g to (2.1); particularly those functions g
that transform the exponential distribution to another distribution with known mean.
As the original exponential distribution has rate Z, the transformed distribution will
have mean f(Z), where f will in general no longer be the logarithm function. Since
in many scenarios we are interested in estimating various transformations f(Z) of Z,
this provides us a with a collection of unbiased estimators to choose from. Moreover,
further transforming these estimators yields a collection of (biased) estimators for other
transformations of Z, including Z itself.

Example 6 (Weibull tricks). For any α > 0, applying the function g(x) = xα

to an Exp(λ) random variable yields a random variable with the Weibull(λ−α, α−1)
distribution with scale λ−α and shape α−1, which has mean λ−αΓ(1 + α) and can
be also represented as λ−αW , where W ∼ Weibull(1, α−1). Defining {W (x)}x∈X

iid∼
Weibull(1, α−1) and noting that g is increasing, applying g to the equality in distribution
(2.1) gives

min
x∈X
{p̃−αW (x)} ∼Weibull(Z−α, α−1). (2.1”)

Estimating the mean of a Weibull(Z−α, α−1) distributed random variable yields an
unbiased estimator of Z−αΓ(1 + α). The special case α = 1 corresponds to the identity
function g(x) = x; we call the resulting trick the Exponential trick.

Table 2.1 lists several examples of tricks derived this way. As Example 6 shows,
these tricks may not involve additive perturbation of the potential function ϕ(x); the
Weibull tricks multiplicatively perturb exponentiated unnormalized probabilities p̃−α

with Weibull noise. As models of interest are often specified in terms of potential
functions, to be able to reuse existing MAP solvers with the new tricks in a black-box
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Table 2.1 New tricks for constructing unbiased estimators of different transformations f(Z)
of the partition function. The tricks are obtained by following the recipe of Section 2.2.2 and
Example 6 with different choices of the function g. See Section 2.2.3 for more details on the
last column.

Trick g(x) Mean f(Z) Variance of g(T ) Asymptotic var. of Ẑ

Gumbel − ln x− c ln Z π2

6
π2

6 Z2

Exponential x 1
Z

1
Z2 Z2

Weibull α xα, α > 0 Z−αΓ(1 + α) Γ(1+2α)−Γ(1+α)2

Z2α
1

α2

(
Γ(1+2α)
Γ(1+α)2 − 1

)
Z2

Fréchet α xα, α ∈ (−1, 0) Z−αΓ(1 + α) Γ(1+2α)−Γ(1+α)2

Z2α
1

α2

(
Γ(1+2α)
Γ(1+α)2 − 1

)
Z2

(for α > 1/2)
Pareto ex Z

Z−1 a Z
(Z−1)2(Z−2)

Z2

(Z−2)2

(for Z > 1) (for Z > 2)
Tail t 1{x>t} e−tZ e−tZ(1− e−tZ) (1−e−tZ)2

t2

manner, we seek an equivalent formulation in terms of the potential function. The
following Proposition shows that by not passing the function g through the minimization
in equation (2.1), the new tricks can be equivalently formulated as averaging additive
Gumbel perturbations of the potential function in different spaces.

Proposition 1. For any g : [0,∞)→ R such that the expectation f(Z) := ET ∼Exp(Z)[g(T )]
exists, we have

f(Z) = Eγ

[
g
(
e−c exp

(
−max

x∈X
{ϕ(x) + γ(x)}

))]
, (2.3)

where {γ(x)}x∈X
iid∼ Gumbel(−c).

Proof. As maxx{ϕ(x) + γ(x)} ∼ Gumbel(−c+ lnZ), we have

e−c exp
(

max
x∈X
{ϕ(x) + γ(x)}

)
∼ Exp(Z) (2.4)

and the result follows by the assumption relating f and g.

Proposition 1 shows that the new tricks can be implemented by solving the same
MAP problems maxx{ϕ(x)+γ(x)} as in the Gumbel trick, and then merely passing the
solutions through the function x 7→ g(e−c exp(x)) before averaging them to approximate
the desired expectation.
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2.2.3 Comparing Tricks

Asymptotic efficiency

The Delta method (Casella and Berger, 2002) is a simple technique for assessing the
asymptotic variance of estimators that are obtained by a differentiable transformation
of an estimator with known variance. The last column in Table 2.1 lists asymptotic
variances of corresponding tricks when unbiased estimators of f(Z) are passed through
the function f−1 to yield (biased, but consistent and non-negative) estimators of Z
itself. It is interesting to examine the constants that multiply Z2 in some of the
obtained asymptotic variance expressions for the different tricks. For example, it can
be shown using Gurland’s ratio (Gurland, 1956) that this constant is at least 1 for the
Weibull and Fréchet tricks, which is precisely the value achieved by the Exponential
trick (which corresponds to α = 1). Moreover, the Gumbel trick constant π2/6 can
be shown to be the limit as α → 0 of the Weibull and Fréchet trick constants. In
particular, the constant of the Exponential trick is strictly better than that of the
standard Gumbel trick: 1 < π2/6 ≈ 1.65. This motivates us to compare the Gumbel
and Exponential tricks in more detail.

Mean squared error (MSE)

For statistical estimators Y , their MSE(Y ) = var(Y ) + bias(Y )2 is a commonly used
comparison metric. When the Gumbel or Exponential tricks are used to estimate
either Z or lnZ, the biases, variances, and MSEs of the estimators can be computed
analytically using standard methods (see Appendix A.1 for details).

For example, the unbiased estimator of lnZ from the Gumbel trick can be turned
into a consistent non-negative estimator of Z by exponentiation: Y = exp( 1

M

∑M
m=1 Xm),

where X1, . . . , XM
iid∼ Gumbel(−c+ lnZ) are obtained using equation (2.1’). The bias

and variance of Y can be computed using independence and the moment generating
functions of the Xm’s, see Appendix A.1 for the calculations.

Perhaps surprisingly, all estimator properties only depend on the true value of Z and
not on the structure of the model (distribution p); this is because the estimators rely
only on i.i.d. samples of a Gumbel(−c+ lnZ) random variable. Figure 2.1 shows the
analytically computed estimator variances and MSEs for the Gumbel and Exponential
tricks. For estimating Z itself (left), the Exponential trick outperforms the Gumbel
trick in terms of MSE for all sample sizes M ≥ 3 (for M ∈ {1, 2}, both estimators
have infinite variance and MSE). The ratio of MSEs quickly approaches π2/6, and in
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Fig. 2.1 Analytically computed MSE and variance of Gumbel and Exponential trick estimators
of Z (left) and ln Z (right). The MSEs are dominated by the variance, so the dashed and
solid lines mostly overlap. See Section 2.2.3 for details.

this regime the Exponential trick requires 1 − 6/π2 ≈ 39% fewer samples than the
Gumbel trick to reach the same MSE. Also, for estimating lnZ, (Figure 2.1, right),
the Exponential trick provides a lower MSE estimator for sample sizes M ≥ 2; only for
M = 1 the Gumbel trick provides a better estimator.

Note that as biases are available analytically, the estimators can be easily debiased
(by subtracting their bias). One then obtain estimators with MSEs equal to the
variances of the original estimators, shown dashed in Figure 2.1. The Exponential
trick would then always outperform the Gumbel trick when estimating lnZ, even with
sample size M = 1.
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Fig. 2.2 MSE of estimators of Z (left) and ln Z (right) stemming from Fréchet (−1
2 < α < 0),

Gumbel (α = 0) and Weibull tricks (α > 0). See Section 2.2.3 for details.
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For Weibull tricks with α ̸= 1 and Fréchet tricks, we estimated the biases and
variances of estimators of Z and lnZ by constructing K = 100, 000 estimators in
each case and evaluating their bias and variance. Figure 2.2 shows the results for
varying α and several sample sizes M . We plot the analytically computed value for
the Gumbel trick at α = 0, as we observe that the Weibull trick interpolates between
the Gumbel trick and the Exponential trick as α increases from 0 to 1. We note that
the minimum MSE estimator is obtained by choosing a value of α that is close to 1,
i.e. the Exponential trick. This agrees with the finding from Section 2.2.3 that α = 1
is optimal as M →∞.

2.2.4 Bayesian Perspective

A Bayesian approach exposes two choices when constructing estimators of Z, or of its
transformations f(Z):

1. A choice of prior distribution p0(Z), encoding prior beliefs about the value of Z
before any observations are collected.

2. A choice of how to summarize the posterior distribution pM (Z|X1, . . . , XM ) given
M samples.

Taking the Jeffrey’s prior p0(Z) ∝ Z−1, an improper prior that it is invariant under
reparametrization, observing M samples X1, . . . , XM

iid∼ Exp(Z) yields the posterior

pM(Z|X1, . . . , XM) ∝ ZM−1e−Z
∑M

m=1 Xm . (2.5)

Recognizing the density of a Gamma(M,
∑M

m=1 Xm) random variable, the posterior
mean is

E[Z|X1, . . . , XM ] = M∑M
m=1 Xm

=
(

1
M

M∑
m=1

Xm

)−1

, (2.6)

coinciding with the Exponential trick estimator of Z.

2.3 Low-rank Perturbations

One way of exploiting perturb-and-MAP to yield computational savings is to replace
independent perturbations of each configuration’s potential with an approximation
referred to as “low-rank perturbations” in the literature (Hazan and Jaakkola, 2012).
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Such approximations are available in discrete graphical models, where the domain X
has a product space structure X = X1 × · · · × Xn, with Xi the state space of the i-th
variable.

Definition 1 (Hazan and Jaakkola (2012)). The sum-unary perturbation MAP value
is the random variable

U := max
x∈X

{
ϕ(x) +

n∑
i=1

γi(xi)
}
, (2.7)

where {γi(xi) | xi ∈ Xi, 1 ≤ i ≤ n} iid∼ Gumbel(−c).

This definition only involves |X1|+ · · ·+ |Xn| i.i.d. Gumbel random variables, rather
than |X | = |X1| × · · · × |Xn|. (With n = 1 this coincides with full-rank perturbations
and U ∼ Gumbel(−c + lnZ).) For n > 2 the distribution of U is not available
analytically. One can similarly define the pairwise (or higher-order) perturbations,
where independent Gumbel noise is added to each pairwise (or higher-order) potential.

Unary perturbations provide the upper bound lnZ ≤ E[U ] on the log partition
function (Hazan and Jaakkola, 2012), can be used to construct a sequential sampler
for the Gibbs distribution (Hazan et al., 2013), and, if the perturbations are scaled
down by a factor of n, a lower bound on lnZ can also be recovered (Hazan et al.,
2013). In this section we show that a subfamily of tricks introduced in Section 2.2,
consisting of Fréchet and Weibull (and Exponential) tricks, is applicable in the low-rank
perturbation setting and use them to derive new families of upper and lower bounds
on lnZ and sequential samplers for the Gibbs distribution. Full proofs are deferred to
Appendix A.2 and A.3.

2.3.1 Upper Bounds on the Partition Function

The following family of upper bounds on lnZ can be derived from the Fréchet and
Weibull tricks.

Proposition 2. For any α ∈ (−1, 0)∪ (0,∞), the upper bound lnZ ≤ U(α) holds with

U(α) := n
ln Γ(1 + α)

α
+ nc− 1

α
lnEγ

[
e−αU

]
. (2.8)

Proof. (Sketch.) By induction on n, with the induction step provided by our Clamping
Lemma (Lemma 1) below.
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To evaluate these bounds in practice, E[e−αU ] is estimated using samples of U .
Corollary 9 of Hazan et al. (2019) can be used to show that var(e−αU) is finite for
α > − 1

2
√

n
, and so then the estimation is well-behaved.

A natural question is how these new bounds relate to the Gumbel trick upper bound
lnZ ≤ E[U ] by Hazan and Jaakkola (2012). The following result aims to answers this.

Proposition 3. The limit of U(α) as α→ 0 exists and equals U(0) := E[U ], i.e. the
Gumbel trick upper bound.

The question remains: when is it advantageous to use a value α ̸= 0 to obtain a
tighter bound on lnZ than the Gumbel trick bound? The next result can provide
guidance.

Proposition 4. The function U(α) is differentiable at α = 0 and the derivative equals

d
dαU(α)

∣∣∣∣∣
α=0

= 1
2

(
n
π2

6 − var(U)
)
. (2.9)

While the variance of U is generally not tractable, in practice one obtains samples
from U to estimate the expectation in U(α) and these samples can be reused to assess
var(U). Interestingly, var(U) equals nπ2/6 for both the uniform distribution and the
distribution concentrated on a single configuration, and in our empirical investigations
always var(U) ≤ nπ2/6. In that case Proposition 4 shows that the derivative of U(α)
at 0 is non-negative and therefore Fréchet tricks (α < 0) provide tighter bounds on
lnZ. However, as U(α) is estimated with samples, the question of estimator variance
arises. We investigate the trade-off between tightness of the bound lnZ ≤ U(α) and
the variance incurred in estimating U(α) empirically in Section 2.5.3.

2.3.2 Clamping

Clamping refers to computing a quantity of interest in a graphical model with a subset
of its variables fixed (“clamped”) to particular values, and then aggregating the results
over all possible values of the clamped variables. For example, the partition function
Z of a graphical model with binary variables can be written as Z = Zx1=0 + Zx1=1,
where Zx1=v is the partition function of the graphical model with variable x1 clamped
to the value v.
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Consider the partial sum-unary perturbation MAP values, where the values of the
first j − 1 variables have been fixed to x1, . . . , xj−1, and only the rest are perturbed:

Uj(x1, . . . , xj−1) := max
xj ,...,xn

ϕ(x) +
n∑

i=j

γi(xi)
 . (2.10)

The following lemma involving the Uj’s serves three purposes: (I.) it provides the
induction step for the proof of Proposition 2, (II.) it shows that clamping never hurts
partition function estimation with Fréchet and Weibull tricks (in the sense that it
cannot generate a looser upper bound), and (III.) it will be used to show that a
sequential sampler constructed in Section 2.3.3 below is well-defined.

Lemma 1 (Clamping Lemma). For any j ∈ {1, . . . , n} and (x1, . . . , xj−1) ∈ X1×· · ·×
Xj−1, the following inequality holds with any α ∈ (−1, 0) ∪ (0,∞):

∑
xj∈Xj

Eγ

[
e−(n−j) ln Γ(1+α)−α(n−j)c)e−αUj+1

]−1/α

≤ Eγ

[
e−(n−(j−1)) ln Γ(1+α)−α(n−(j−1))c)e−αUj

]−1/α
. (2.11)

Proof. This follows directly from the Fréchet trick (α ∈ (−1, 0)) or the Weibull trick
(α > 0) and representing the Fréchet resp. Weibull random variables in terms of
Gumbel random variables. See Appendix A.2.1 for more details.

Corollary 7. Clamping never hurts lnZ estimation using any of the Fréchet or Weibull
upper bounds U(α).

Proof. Applying the function x 7→ ln(x) to both sides of the Clamping Lemma 1 with
j = 1, the right-hand side equals U(α), while the left-hand side is the estimate of lnZ
after clamping variable x1.

This result was shown previously in restricted settings (Hazan et al., 2013; Zhao
et al., 2016). Similar results showing that clamping improves partition function
estimation have been obtained for the mean field and TRW approximations (Weller
and Domke, 2016), and in certain settings for the Bethe approximation (Weller and
Jebara, 2014b) and L-Field (Zhao et al., 2016).
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Algorithm 1 Sequential sampler for the Gibbs distribution
Input: α ∈ (−1, 0) ∪ (0,∞), potential function ϕ on X = X1 × · · · × Xn

Output: a sample x from the Gibbs distribution ∝ eϕ(x)

1: for j = 1 to n do
2: for xj ∈ Xj do

3: pj(xj)← e−c

Γ(1+α)1/α

Eγ[e−αUj+1(x1,...,xj )]−1/α

Eγ[e−αUj (x1,...,xj−1)]−1/α

4: pj(reject)← 1−∑xj∈Xj
pj(xj)

5: xj ← sample according to pj

6: if xj == reject then
7: Restart (goto 1)
8: x← (x1, . . . xn)

2.3.3 Sequential Sampling

As described in Section 1.4.2, a probability distribution p(x1, . . . , xn) on X = X1 ×
· · · × Xn can be sampled using a sequential procedure where one samples X1 from
the marginal p(x1), and then for each i = 2, . . . , n samples Xi from the conditional
p(xi | x1, . . . , xi−1). Hazan et al. (2013) derived a sequential sampling procedure for
the Gibbs distribution by exploiting the U(0) Gumbel trick upper bound on lnZ. In
the same spirit, one can derive sequential sampling procedures from the Fréchet and
Weibull tricks, leading to Algorithm 1.

This algorithm is well-defined if pj(reject) ≥ 0 for all j, which can be shown by
canceling terms in the Clamping Lemma 1. We discuss correctness in Appendix A.2.2.
Similarly as for the Gumbel sequential sampler of Hazan et al. (2013), the expected
number of restarts (and hence the running time) only depend on the quality of the
upper bound (U(α)− lnZ), and not on the chosen ordering of variables in the graphical
model.

2.3.4 Lower Bounds on the Partition Function

Similarly as in the Gumbel trick case (Hazan et al., 2013), one can derive lower bounds
on lnZ by perturbing an arbitrary subset S of variables.

Proposition 5. Let X = X1 × · · · Xn be a product space and ϕ a potential function on
X . Let α ∈ (−1, 0) ∪ (0,∞). For any subset S ⊆ {1, . . . , n} of the variables x1, . . . , xn

we have
lnZ ≥ c+ ln Γ(1 + α)

α
− 1
α

lnE
[
e−α maxx{ϕ(x)+γS(xS)}

]
, (2.12)
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where xS := {xi : i ∈ S} and γS(xS) ∼ Gumbel(−c) independently for each setting of
xS.

By averaging n such lower bounds corresponding to singleton sets S = {i}, we
obtain a lower bound on lnZ that involves the average-unary perturbation MAP value

L := max
x∈X

{
ϕ(x) + 1

n

n∑
i=1

γi(xi)
}
. (2.13)

Corollary 8. For any α ∈ (−1, 0) ∪ (0,∞), we have the lower bound lnZ ≥ L(α),
where

L(α) := c+ ln Γ(1 + α)
α

− 1
nα

lnE [exp (−nαL)] . (2.14)

Again, L(0) := E[L] can be defined by continuity, where E[L] ≤ lnZ is the Gumbel
trick lower bound by Hazan et al. (2013).

2.4 Advantages of the Gumbel Trick

We have seen how the Gumbel trick can be embedded into a continuous family of
tricks, consisting of Fréchet, Exponential, and Weibull tricks. We showed that the new
tricks can provide more efficient estimators of the partition function in the full-rank
perturbation setting (Section 2.2), and in the low-rank perturbation setting lead to
sequential samplers and new bounds on lnZ, which can be also more efficient, as we
show empirically in Section 2.5.3. To balance the discussion of merits of different tricks,
in this section we briefly highlight advantages of the Gumbel trick that stem from its
simpler analytical form.

First, by consulting Table 2.1 we see that the function g(x) = − ln x− c has the
property that the variance of the resulting estimator (of lnZ) does not depend on the
value of Z; the function g is a variance stabilizing transformation for the Exponential
distribution.

Second, exploiting the fact that the logarithm function leads to additive perturba-
tions, Maji et al. (2014) showed that the entropy of x∗, the configuration with maximum
potential after sum-unary perturbation in the sense of Definition 1, can be bounded
as H(x∗) ≤ B(p) := ∑n

i=1 Eγi
[γi(x∗

i )]. We extend this result to show how the errors of
bounding lnZ, sampling, and entropy estimation are related:
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Proposition 6. Writing p for the Gibbs distribution and B(p) := Eγi
[γi(x∗

i )] for the
entropy bound, we have

(U(0)− lnZ)︸ ︷︷ ︸
error in ln Z bound

+ KL(x∗ ∥ p)︸ ︷︷ ︸
sampling error

= B(p)−H(x∗)︸ ︷︷ ︸
error in entropy estimation

. (2.15)

Third, the additive character of the Gumbel perturbations can also be used to
derive a new result relating the error of the lower bound L(0) and of sampling x∗∗,
defined as the configuration achieving the maximum average-unary perturbation value
L, instead of exactly sampling from the Gibbs distribution p:

Proposition 7. Writing p for the Gibbs distribution and x∗∗ for the argmax in Equation
(2.13),

lnZ − L(0)︸ ︷︷ ︸
error in ln Z bound

≥ KL(x∗∗ ∥ p)︸ ︷︷ ︸
sampling error

≥ 0. (2.16)

Remark. While we knew from (Hazan et al., 2013) that lnZ − L(0) ≥ 0, this is a
stronger result showing that the size of the gap is an upper bound on the KL divergence
between the approximate sampling distribution of x∗∗ and the Gibbs distribution p.

Proofs of both new results appear in Appendix A.2.3 and A.3.2.
Fourth, viewed as a function of the Gumbel perturbations γ, the random variable

U has a bounded gradient, allowing earlier measure concentration results (Hazan et al.,
2019; Orabona et al., 2014). Proving similar measure concentration results for the
expectations E[e−αU ] appearing in the definition of U(α) for α ̸= 0 may be more
challenging.

2.5 Experiments

We conducted experiments with the following aims:

1. To show that the higher efficiency of the Exponential trick in the full-rank
perturbation setting is useful in practice, we compared it to the Gumbel trick
in A* sampling (Maddison et al., 2014) (Section 2.5.1) and in the large-scale
discrete sampling setting of Chen and Ghahramani (2016) (Section 2.5.2).

2. To show that non-zero values of α can lead to better estimators of lnZ in the
low-rank perturbation setting as well, we compare the Fréchet and Weibull trick
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bounds U(α) to the Gumbel trick bound U(0) on a common discrete graphical
model with different coupling strengths (Section 2.5.3).

2.5.1 A* Sampling

A* sampling (Maddison et al., 2014) is a sampling algorithm for continuous distributions
that perturbs the log-unnormalized density ϕ with a continuous generalization of the
Gumbel trick, called the Gumbel process, and uses a variant of A* search to find the
location of the maximum of the perturbed ϕ. Returning the location yields an exact
sample from the original distribution, as in the discrete Gumbel trick. Moreover, the
corresponding maximum value also has the Gumbel(−c+ lnZ) distribution (Maddison
et al., 2014). Our analysis in Section 2.2.3 tells us that the Exponential trick yields
an estimator with lower MSE than the Gumbel trick; we verified this on the Robust
Bayesian Regression experiment of Maddison et al. (2014). We constructed estimators
of lnZ from the Gumbel and Exponential tricks (debiased version, see Section 2.2.3),
and assessed their variances by constructing each estimator K = 1000 times and
looking at the sample variance. Figure 2.3a shows that the Exponential trick requires
up to 40% fewer samples to reach a given MSE.

Note that despite using (an extension of) the algorithm called A* sampling, the
efficiency gain arises, as in the rest of this Chapter, only when estimating normalizing
constants (and not when only sampling).

2.5.2 Scalable Partition Function Estimation

Chen and Ghahramani (2016) considered sampling from a discrete distribution of the
form p(x) ∝ f0(x)∏S

s=1 fs(x) when the number of factors S is large relative to the
domain size |X |. Computing i.i.d. Gumbel perturbations γ(x) for each x ∈ X is then
relatively cheap compared to evaluating all potentials ϕ(x) = ln f0(x) +∑S

s=1 ln fs(x).
Chen and Ghahramani (2016) observed that each (perturbed) potential can be estimated
by subsampling the factors, and potentials that appear unlikely to yield the MAP value
can be pruned off from the search early on. The authors formalized the problem as a
multi-armed bandit problem with a finite reward population and derived approximate
algorithms for efficiently finding the maximum perturbed potential with a probabilistic
guarantee.

While Chen and Ghahramani (2016) considered sampling, by modifying their
procedure to return the value of the maximum perturbed potential rather than the
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Fig. 2.3 (a) Sample size M required to reach a given MSE using Gumbel and Exponential
trick estimators of ln Z, using samples from A∗ sampling (see Section 2.5.1) on a Robust
Bayesian Regression task. The Exponential trick is more efficient, requiring up to 40% fewer
samples to reach a given MSE. (b) MSE of ln Z estimators for different values of α, using
M = 100 samples from the approximate MAP algorithm discussed in Section 2.5.2, with
different error bounds δ. For small δ, the Exponential trick is close to optimal, matching the
analysis of Section 2.2.3. For larger δ, the Weibull trick interpolation between the Gumbel
and Exponential tricks can provide an estimator with lower MSE.

argmax (cf equations (2.1) and (2.2)), we can estimate the partition function instead.
However, the approximate algorithm only guarantees to find the MAP configuration
with a probability 1− δ. Figure 2.3b shows the results of running the Racing-Normal
algorithm of Chen and Ghahramani (2016) on the synthetic dataset considered by
the authors with the “very hard” noise setting σ = 0.1. For low error bounds δ the
Exponential trick remained close to optimal, but for a larger error bound the Weibull
trick interpolation between the Gumbel and Exponential tricks proved useful to provide
an estimator with lower MSE.

2.5.3 Low-rank Perturbation Bounds on lnZ

Hazan and Jaakkola (2012) evaluated tightness of the Gumbel trick upper bound
U(0) ≥ lnZ on 10 × 10 binary spin glass models. We show one can obtain more
accurate estimates of lnZ on such models by choosing α ≠ 0. To account for the fact
that in practice the expectation in U(α) is replaced with a sample average, we treat
U(α) as an estimator of lnZ with asymptotic bias equal to the bound gap (U(α)− lnZ),
and estimate its MSE.
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Fig. 2.4 MSEs of U(α) as estimators of ln Z on 10× 10 attractive (left, middle) and mixed
(right) spin glass model with different coupling strengths C (see Section 2.5.3). We also show
the percentage of samples saved by using the best α in place of the Gumbel trick estimator
U(0), assuming the asymptotic regime. For this we only considered α > −1/(2

√
n) = −0.05,

where variance is provably finite, see Section 2.3.1. The MAP problems were solved using
the exact junction tree algorithm (JCT, left and right), or approximate belief propagation
(BP, middle). In all cases, when coupling is very low, α close to 0 is optimal. This also holds
for BP when coupling is high. In other regimes, upper bounds derived from the Fréchet trick,
i.e. α < 0, provide more accurate estimators.

Figure 2.4 shows the MSEs of U(α) as estimators of lnZ on 10 × 10 (n = 100)
binary pairwise grid models with unary potentials sampled uniformly from [−1, 1] and
pairwise potentials from [0, C] (attractive models) or from [−C,C] (mixed models),
for varying coupling strengths C. We replaced the expectations in U(α) with sample
averages of size M = 100, using libDAI (Mooij, 2010) to solve the MAP problems
yielding these samples. We constructed each estimator 1000 times to assess its variance.
The results indicate that especially in models with higher coupling strengths C, upper
bounds U(α) derived from the Fréchet trick (α < 0) can estimate lnZ more accurately.

2.6 Discussion and Future Work

By casting partition function evaluation as a parameter estimation problem for the
exponential distribution, we derived a family of methods of which the Gumbel trick is
a special case. These methods can be equivalently seen as (1) perturbing models using
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different distributions, or as (2) averaging standard Gumbel perturbations in different
spaces, allowing implementations with essentially no additional cost.

We showed that in the full-rank perturbation setting, the new Exponential trick
provides an estimator with lower MSE, or instead allows using up to 40% fewer samples
than the Gumbel trick estimator to reach the same MSE.

In the low-rank perturbation setting, we used our Fréchet, Exponential and Weibull
tricks to derive new bounds on lnZ and sequential samplers for the Gibbs distribution,
and showed that these can also behave better than the corresponding Gumbel trick
results. However, the optimal trick to use (as specified by α) depends on the model,
sample size, and MAP solver used (if approximate). Since in practice the dominant
computational cost is carried by solving repeated instances of the MAP problem, one
can try and assess different values of α on the problem at hand. That said, we believe
that investigating when different tricks yield better results is an interesting avenue for
future work.

Finally, we balanced the discussion by pointing out that the Gumbel trick has a
simpler analytical form which can be exploited to derive more interesting theoretical
statements in the low-rank perturbation setting. Beyond existing results, we derived new
connections between errors of different procedures using low-rank Gumbel perturbations.

Code to reproduce experiments presented in this chapter is available at https:
//github.com/matejbalog/gumbel-relatives.

Future work Several more immediate questions are left open by this work.

• Connection to the GEV distribution
The Fisher–Tippett–Gnedenko theorem (Fisher and Tippett, 1928), also known as
the extreme value theorem, states that the normalized maximum of i.i.d. random
variables can only converge in distribution to one of three distributions: Fréchet,
Gumbel, and Weibull. (As a result, these three distributions are sometimes
grouped into the single Generalized Extreme Value (GEV) distribution.) These
three distributions also happen to be the ones for which we were able to derive
bounds on the partition function in the low-rank perturbation setting on undi-
rected graphical models. It would be interesting to understand whether there is
a common mathematical mechanism that delineates these three distributions in
both of these settings.

https://github.com/matejbalog/gumbel-relatives
https://github.com/matejbalog/gumbel-relatives
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• Mathematical connection to α-divergences
If we shift our parametrization α′ := α+1 so that the Fréchet trick corresponds to
α′ ∈ (0, 1), the Weibull trick to α′ ∈ (1,∞), and the Gumbel trick being the limit
α′ → 1, not only is there a superficial similarity to Rényi entropies (Rényi, 1960)
and α-divergences (Minka, 2005) that are defined over the same range with the
Shannon entropy and Kullback-Leibler divergence the respective limits as α′ → 1,
also the mathematical expressions involved in manipulating α-divergences (e.g., Li
and Gal, 2017) closely resemble those encountered by us (see Appendix A). It
could be interesting to understand whether there is a deeper connection between
two.

Chapter 3 shows how the perturb-and-MAP framework can be extended to
estimation of Rényi entropies. Note, however, that this extension is orthogonal to
the new tricks presented in this chapter – each Rényi entropy can be estimated
using any of the tricks presented here.

• Further analysis of new tricks in the low-rank setting
The question when exactly an instance of the Fréchet trick leads to a more
accurate estimator of the partition function has not been satisfactorily answered
by this work. Further development of the analysis started by Proposition 4 could
be helpful. The measure concentration results of (Orabona et al., 2014) have also
not yet been extended to the new tricks.





Chapter 3

Rényi Entropy Estimation

Chapter abstract The Gumbel trick is a perturb-and-MAP method for sampling
discrete distributions and estimating their normalising constants. It operates by
repeatedly perturbing the potential function with Gumbel noise, and each time finding
the most likely configuration. We show that a simple modification of the Gumbel trick
allows unbiased estimation of Rényi entropies, and thus also obtaining bounds on the
Shannon entropy. The modification can be viewed either as applying the Gumbel trick
to a rescaled potential function, or equivalently as changing the scale of the applied
Gumbel noise. The former view allows carrying over theoretical results about the
Gumbel trick to this entropy estimation setting, while the latter view shows that from
a computational perspective, our entropy estimation methods can be efficiently applied
whenever the standard Gumbel trick can.

3.1 Introduction

This chapter is a continuation of Chapter 2 in that it also assumes the general setting
from Section 1.5.1 where a Gibbs distribution on some sample space X is specified in
the form of a potential function ϕ : X → [−∞,∞) that specifies the distribution via
p(x) ∝ eϕ(x). However, this chapter is concerned with a different fundamental problem,
the task of estimating the amount of uncertainty in the probability distribution p.
Popular measures of uncertainty include the widely used Shannon entropy (Shannon,
1948) as well as its generalization to α-Rényi entropies (Rényi, 1960), 0 ≤ α ≤ ∞,
where the Shannon entropy corresponds to α = 1. As discussed in Chapter 2, perturb-
and-MAP methods (Papandreou and Yuille, 2010) are randomized algorithms that
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have already been shown useful for estimating partition functions and sampling from
given distributions. The contributions of this chapter are:

1. A mathematically and computationally simple extension of the perturb-and-MAP
framework to the integration problem of Rényi entropy estimation.

2. Improving the understanding of the existing Shannon entropy estimator by Maji
et al. (2014), which is based on the Gumbel trick. We show that it can be
recovered as the α → 1 limit of a specific type of our new estimators, and we
also compute its variance analytically.

On a high level, this chapter shows that Rényi entropy estimation is another integration
problem that can be converted into the optimization problem of finding most-likely
configurations, using the perturb-and-MAP framework.

3.2 Background and Related Work

3.2.1 Rényi Entropy

The Rényi entropy (Rényi, 1960) can be seen as a generalization of the Shannon entropy
into a continuous class of entropies parametrized by α ∈ [0,∞]. For α ∈ (0, 1) ∪ (1,∞)
the α-Rényi entropy is given by Hα(p) := 1

1−α
ln∑x∈X p(x)α, and for α ∈ {0, 1,∞} the

definition is extended by taking appropriate limits, as described in subsections below.
By computing the derivative d

dα
Hα(p) one can show that Rényi entropies are non-

increasing in α for α ∈ (0, 1) and α ∈ (1,∞). Since the two-sided limit limα→1 Hα(p)
exists (and equals the Shannon entropy, see below) one concludes that Hα(p) is non-
decreasing throughout [0,∞].

Rényi entropies encompass and generalize multiple measures of uncertainty with
important roles in different fields, some of which we now describe.

Case α = 0 (Hartley entropy, max-entropy)

The 0-Rényi entropy H0(p) reduces to the logarithm of the support size of p:

H0(p) := lim
α↓0

Hα(p) = ln | supp(p)|. (3.1)

This quantity is also known as the Hartley entropy, or the max-entropy of p (due to
Rényi entropies being non-increasing in α).
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Estimating the Hartley entropy is equivalent to support size estimation, an important
problem well studied in the literature (Chao, 1984; Hao and Orlitsky, 2019; Valiant
and Valiant, 2011; Wu and Yang, 2016). Estimating the support size is also related to
the unseen species problem (Efron and Thisted, 1976; Orlitsky et al., 2016) in ecology,
the task of estimating how many new species are going to be discovered in m future
collection trials, given n existing i.i.d. observations. This problem is equivalent to
support size estimation in the limit m→∞.

Case α = 1 (Shannon entropy)

Applying l’Hôpital’s rule one can check that the following two-sided limit exists:

H1(p) := lim
α→1

Hα(p) = −
∑
x∈X

p(x) ln p(x), (3.2)

and equals the standard Shannon entropy of p. The Shannon entropy (Shannon, 1948)
is a fundamental measure of uncertainty in a probability distribution with strong
information-theoretic properties, and its estimation has been heavily studied in the
literature (see, e.g., Paninski, 2003; Valiant and Valiant, 2011; Wu and Yang, 2016
and references therein) with applications including univariate (Vasicek, 1976) and
multivariate (Goria et al., 2005) normality testing, independent component analysis
(ICA, Learned-Miller and John III, 2003; Pham, 2004) as well as other signal processing
applications (Hero et al., 2002), and applications in natural sciences such as studying
heart rate patterns in medicine (Porta et al., 2001).

Case α = 2 (Rényi’s quadratic entropy, Collision entropy)

Known as Rényi’s quadratic entropy due to its mathematical form, it is also called the
collision entropy of p thanks to its intuitive interpretation as (the negative logarithm
of) the probability that two independent draws from p take on the same value:

H2(p) = − ln
∑
x∈X

p(x)2 = − lnP
Y,Z

iid∼p
[Y = Z]. (3.3)

This is directly related to the inverse participation ratio IPR := 1/(∑x∈X p(x)2) =
eH2(p), which is used in quantum mechanics to quantify the uncertainty about the
location of a particle that can exist in a quantum superposition of states over many
locations.
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The collision probability itself is called the index of coincidence IC := ∑
x∈X p(x)2

and is used in natural language analysis, as well as in cryptography for the analysis of
encrypted texts (Friedman, 1922). The index of coincidence can be directly computed
from the collision entropy via IC = e−H2(p).

In the continuous case, Rényi’s (differential) quadratic entropy can be conveniently
estimated using a Parzen window estimator (kernel density estimator) of the distribution
with a Gaussian kernel (Principe and Xu, 1999); this is thanks to the integral of a
product of two Gaussian densities being analytically tractable.

Case α =∞ (Min-entropy)

Sandwiching the summation appearing in the Rényi entropy using the simple inequalities
(maxy∈X p(y))α ≤ ∑x∈X p(x)α ≤ |X |(maxy∈X p(y))α, one can demonstrate the limit

H∞(p) := lim
α→∞

Hα(p) = − ln max
x∈X

p(x), (3.4)

and its value is also called the min-entropy, as it is the smallest among all Rényi
entropies. The min-entropy plays an important role in the study of randomness
extractors (Nisan, 1996; Santha and Vazirani, 1986), algorithms that turn a weakly
random (biased) source into an (almost) uniformly distributed random stream, as
efficiently as possible.

General Rényi entropies

Apart from being used to bound and estimate the more widely used Shannon entropy
(e.g., Harvey et al. (2008) considered α ∈ (0, 1) ∪ (1, 2) for this purpose), general
α-Rényi entropies have also turned out to be useful in and of themselves.

Hero and Michel (1999) discovered a relationship between the Rényi entropy and
the edge weight of approximate minimum trees spanning a set of samples from a given
probability distribution over Euclidean space. Ma et al. (2000) utilized this relationship
for image registration, the task of aligning multiple images taken from different angles
at different times, by minimizing the Rényi entropy of the joint distribution of aligned
images. The general approach of entropic spanning graphs estimating Rényi entropies
has subsequently been utilized in many other general tasks including feature clustering
and image retrieval (Hero et al., 2002).

General Rényi entropies have also found applications in information theory (Csiszár,
1995), quantum physics (Cui et al., 2012), and unsupervised clustering (Jenssen et al.,
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2003). In both classical and quantum thermodynamics, the α-Rényi entropy can be
interpreted as the maximum amount of work a system whose temperature is suddenly
divided by α is able to perform as it moves into its new equilibrium, divided by the
absolute change in temperature (Baez, 2011). The asymptotic behaviour of the Rényi
entropy of a specific Ising model was studied analytically by Stéphan et al. (2010).

3.2.2 Estimating Rényi Entropies

Apart from estimation methods specific to particular values of α already mentioned in
Section 3.2.1, the problem of estimating Rényi entropies for general values of α has
also been studied in the literature.

Similarly as for the Shannon entropy, literature on Rényi entropy estimation usually
assumes access to N samples X1, . . . , XN

iid∼ p from the unknown distribution p, and the
task is to estimate the Rényi entropy from these N points only. This setup includes the
aforementioned work on entropic spanning graphs (Hero et al., 2002), as well as later
work on estimators based on k-nearest neighbour graphs for which Pál et al. (2010)
proved consistency of the estimators and also provided first finite-sample error bounds.
Acharya et al. (2016) identified three different regimes in which sample complexity of
Rényi entropy estimation behaves surprisingly differently: α < 1, non-integer α > 1
and integer α > 1. Some of their sample complexity bounds were subsequently refined
by Obremski and Skorski (2017). The most recent upper bounds are due to Hao
and Orlitsky (2019), who showed that they can be achieved by profile maximum
likelihood (Orlitsky et al., 2004), a plug-in estimation method where a distribution
maximizing the likelihood of the observed sample profile (“histogram of histograms”) is
found. A major advantage of this approach is that once a profile maximum likelihood
estimate is computed, it can be used to estimate multiple properties of the unknown
distribution at once, including Rényi entropies of different orders α (Hao and Orlitsky,
2019).

A somewhat different setup is considered in the streaming setting, where one still
assumes i.i.d. samples from p but these arrive in an online manner and there are time and
memory constraints imposed on the computation carried out after each sample arrives.
The problem is related to estimating frequency moments of a data stream (Alon et al.,
1999; Indyk and Woodruff, 2005): given an incoming sequence with nx elements equal
to x, the task is to estimate moments of the form Fα := ∑

x n
α
x . Harvey et al. (2008)

exploited this relationship for α ∈ (0, 1) ∪ (1, 2] and showed how the corresponding
Rényi entropies can be used to estimate the Shannon entropy in the streaming setting;
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however, the subroutine estimating the Rényi entropy is also independently applicable.
More recently, among other distribution properties Crouch et al. (2016) considered
estimating from a stream the collision probability of a distribution, which is directly
related to the Rényi entropy with α = 2 (see Section 3.2.1).

In this work we consider a substantially different setup, where instead of access to
samples from p we assume that the distribution is described by a potential function
ϕ : X → [−∞,∞). This setup arises in the general framework of graphical models
(Section 1.5.1), and is identical to the setup of Chapter 2. Similarly to partition function
estimation, computing entropies in this setting is a high-dimensional integration problem
that requires consideration of all possible configurations of the graphical model in the
worst case. For the Shannon entropy, a popular approximation is the Bethe entropy,
which only sums up singleton entropies of univariate marginals and mutual informations
between pairs of variables joined by edges of the graphical model. The closest work to
ours is that of Maji et al. (2014), who exploited the duality relationship between the
partition function and the Shannon entropy to construct a perturb-and-MAP estimator
of the Shannon entropy based on the Gumbel trick; we discuss its relationship to our
Rényi entropy estimators in detail in Section 3.4.1.

3.3 Method

Notation Throughout this chapter, we assume the following setup. Let X be a finite
set, p̃ : X → [0,∞) an unnormalized mass function over X , ϕ : X → [−∞,∞) the
associated potential function ϕ(x) := ln p̃(x), and p = p̃/Z the normalized version of p̃.
The task is to estimate the α-Rényi entropy of p, for a given value of α.

Main idea As a first step, assume that p̃ = p is in fact normalized, so Z = 1 and
ϕ(x) = ln p(x). In that case the α-Rényi entropy of p, where α ∈ [0, 1) ∪ (1,∞),
can be rewritten using the Gumbel trick applied to the unnormalized mass function
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x 7→ p(x)α:

Hα(p) := 1
1− α ln

∑
x∈X

p(x)α (3.5)

= 1
1− αEγ

[
max
x∈X
{ln (p(x)α) + γ(x)}

]
(3.6)

= 1
1− αEγ

[
max
x∈X
{αϕ(x) + γ(x)}

]
(3.7)

= α

1− αEγ

[
max
x∈X

{
ϕ(x) + 1

α
γ(x)

}]
, (3.8)

where {γ(x)}x∈X
iid∼ Gumbel(−c) are i.i.d. Gumbel perturbations with zero mean.

This shows that Rényi entropy estimation can be reduced to the MAP problem
much in the same way as partition function estimation was by Hazan and Jaakkola
(2012). While Equation (3.7) shows that the Rényi entropy can be estimated by
applying the Gumbel trick to a rescaled potential function αϕ(x), Equation (3.8) shows
that in fact one can keep working with the unmodified potential function ϕ(x) and
instead just change the scaling of the Gumbel perturbations. The former view is
important as it allows carrying over theoretical results about the Gumbel trick to the
Rényi entropy estimation setting (the trick is applied unchanged, only to a rescaled
potential function). The latter view is useful from an implementation perspective, as
it shows that the method can be easily applied whenever the original Gumbel trick
can; the only required modification is scaling the Gumbel perturbation by 1

α
.

Note that estimating the Rényi entropy by sampling from p and estimating the
α-moment of p from samples would not lead to an unbiased estimator of the Rényi
entropy Hα(p) due to the presence of the logarithm function.

Finally, as pointed out in Chapter 2, a lower-variance (but biased) estimator could
be obtained by using the so-called “Exponential trick” instead of the Gumbel trick in
deriving Equation (3.6).

3.3.1 The Unnormalized Case

While the above derivation for the normalized case p̃ = p captures the simplicity of
extending the Gumbel trick to Rényi entropy estimation, in practice one is usually
given an unnormalized potential function – especially in the case of undirected graph-
ical models (Section 1.5.1). In this subsection we thus explore the case where the
normalization Z is unknown. While in principle any estimation method for Z could be
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used to first normalize the distribution, we show that also using the Gumbel trick for
this purpose is conveniently possible, and statistically advantageous.

In the unnormalized case the α-Rényi entropy Hα(p) can be decomposed into two
terms, the first involving the unnormalized distribution p̃ and the second involving the
unknown partition function Z. The first term is then handled mathematically in the
same way as in the normalized case above, while the log-partition function lnZ in the
second term is re-expressed using the standard Gumbel trick:

Hα(p) := 1
1− α ln

∑
x∈X

p(x)α (3.9)

= 1
1− α ln

∑
x∈X

p̃(x)α − α

1− α lnZ (3.10)

= α

1− αEγ

[
max
x∈X

{
ϕ(x) + 1

α
γ(x)

}]
− α

1− αEγ

[
max
x∈X
{ϕ(x) + γ(x)}

]
. (3.11)

As in partition function estimation (Chapter 2), the expectations will utimately
be estimated using M ∈ N samples. Here, the two expectations could be estimated
separately, with independent Gumbel perturbations in both cases. However, by linearity
of expectation the difference of expectations will be the same if Gumbel perturbations
γ(x) are shared between the two terms:

Hα(p) = α

1− αEγ

[
max
x∈X

{
ϕ(x) + 1

α
γ(x)

}
−max

x∈X
{ϕ(x) + γ(x)}

]
. (3.12)

The second term, which accounts for the unknown normalisation Z, can intuitively be
seen as a control variate since it appears to be positively correlated with the first term.
The following proposition formalizes this intuition and shows that indeed sharing the
noise cannot increase the estimator variance:

Proposition 8. For A ⊆ X , let ĤA
α (p) be the estimator of Hα(p) that shares the noise

among configurations in A, and uses independent noise for the others:

ĤA
α (p) := α

1− α
1
M

M∑
m=1

[
max
x∈X

{
ϕ(x) + 1

α
γ

(m)
0 (x)

}
−max

x∈X

{
ϕ(x) + γ

(m)
1 (x)

}]
(3.13)

where γ(m)
0 (x) = γ

(m)
1 (x) for all x ∈ A, and otherwise all γ’s are i.i.d. Gumbel(−c).

Then
var

[
ĤX

α (p)
]
≤ var

[
Ĥ∅

α(p)
]

= 1
M

1 + α2

(1− α)2
π2

6 (3.14)
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Proof (sketch). The product measure version of Harris’ inequality (a special case of
the FKG inequality) can be used to show that the covariance between the two terms is
non-negative; see Appendix B for details.

While the control variate appeared out of necessity to estimate the unknown log-
partition function lnZ, it can also be beneficial when Z is already known. Analytical
treatment of the general case is difficult, but it can be shown that a lower-variance
estimator is obtained when α < 2 and the distribution is uniform on its support (which
includes the extreme cases of deterministic and uniform distributions as special cases).
See Proposition 19 in Appendix B for details.

Another potential advantage stemming from sharing Gumbel perturbations be-
tween the two estimation problems is that depending on the procedure used, the two
maximization problems could be solved jointly since especially for values of α close to
1 the optimization landscapes of the two problems are similar.

Limiting cases

For α→ 0 (max-entropy) our Rényi entropy estimator eliminates the potential function
from the entropy estimation term (multiplies it by 0, see Equation (3.7)) and does
not require the control variate term at all ( α

1−α
= 0). The method is thus prescribing

uniform sampling from the distribution’s support, and looking at the value of the
largest perturbation. The variance of the resulting estimator is π2

6 by max-stability
of the Gumbel distribution. This highlights a difference to entropy estimation from
samples, where estimating the max-entropy is a potentially challenging support size
estimation problem (see Section 3.2.1). The reason behind this difference is that in the
perturb-and-MAP setting we are able to change the sampling distribution.

For α → ∞ (min-entropy) the fraction α
1−α
→ 1, and the multiplicative factor

of the Gumbel perturbation in the entropy estimation term vanishes 1
α
→ 0. The

method thus prescribes turning off the Gumbel perturbation and simply finding the
configuration with maximum potential. When the normalization Z is unknown, the
Gumbel trick is only needed to estimate lnZ; otherwise the estimator of H∞(p) is
fully deterministic (has variance 0). Again this highlights the difference from entropy
estimation using samples, since in the Perturb-and-MAP setting tractable identification
of maximum-probability configurations is assumed.

Finally, the limit α → 1 (Shannon entropy) will be studied in more detail in
Section 3.4.
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3.3.2 Gumbel Trick Machinery in Rényi Entropy Estimation

In this subsection we discuss existing theoretical and algorithmic developments related
to the Gumbel trick, and show that they cleanly extend to the new Rényi entropy
estimation setting considered in this chapter.

Relatives of the Gumbel Trick

Chapter 2 generalized the Gumbel trick into an entire family of tricks, termed the
“relatives” of the Gumbel trick. Other members of this family can be useful for two
reasons:

1. they provide unbiased estimators of transformations of Z other than lnZ, and

2. new estimators, even if biased, can have lower variance than the Gumbel trick
estimator for the same quantity.

The Gumbel trick estimators generally lead to unbiased estimators of the Rényi entropy,
but as an example of (1), the Exponential trick allows unbiased estimation of the inverse
participation ratio eH2(p) = (∑x∈X p(x)2)−1, which is of interest in quantum mechanics.

As an example of (2), the Exponential trick provides a biased estimator of the Rényi
entropy but its MSE will be provably lower than the MSE (variance) of the Gumbel
trick estimator presented above (this follows from Section 2.2.3). In the low-rank
perturbation setting in discrete graphical models, it is the Fréchet trick that tends to
yield estimators with lowest MSE (see Section 2.5.3 and Figure 2.3).

Low-rank Setting

Equation (3.8) showed that the Rényi entropy can be obtained by simply applying
the standard Gumbel trick to a rescaled potential function αϕ(x). As a result, the
low-rank perturbation upper and lower bounds on the log-partition function derived
either from the Gumbel trick (Hazan and Jaakkola, 2012; Hazan et al., 2013) or from
its relatives (Chapter 2) can be directly applied to yield bounds on the Rényi entropy
Hα(p). For example, from the Gumbel trick low-rank bounds we have (for simplicity,
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in the normalized case ϕ(x) = ln p(x)):

α

1− αEγ

[
max
x∈X

{
ϕ(x) + 1

αn

n∑
i=1

γi(xi)
}]

≤ Hα(p) ≤ α

1− αEγ

[
max
x∈X

{
ϕ(x) + 1

α

n∑
i=1

γi(xi)
}]

(3.15)

when α ∈ [0, 1), while for α ∈ (1,∞) these inequalities hold reversed (since α
1−α

< 0).
In the unnormalized case where Z is not known the standard low-rank bounds on lnZ
can be used, and Gumbel perturbations shared between the two expectations as in
Section 3.3.1.

Being able to bound Rényi entropies is particularly useful if the Shannon entropy is
of interest, as for α1 < 1 upper bounds on Hα1(p) yield upper bounds on the Shannon
entropy, while for α2 > 1 lower bounds on Hα2(p) yield lower bounds on the Shannon
entropy:

α2

1− α2
Eγ

[
max
x∈X

{
ϕ(x) + 1

α2

n∑
i=1

γi(xi)
}]

≤ Hα2(p) ≤ H1(p) ≤ Hα1(p) ≤ α1

1− α1
Eγ

[
max
x∈X

{
ϕ(x) + 1

α1

n∑
i=1

γi(xi)
}]

. (3.16)

(Again the extension to the unnormalized case is handled by adding the corresponding
low-rank bounds on lnZ.) This situation is different from (Maji et al., 2014) where
a low-rank estimator of the Shannon entropy is also constructed, but it is only an
upper bound on the Shannon entropy of an approximate distribution, and not on the
Shannon entropy of the true distribution p.

Measure concentration

In practice the expectations with respect to Gumbel perturbations need to be estimated
by samples. Since the Gumbel distribution has a heavy upper tail, the question of
measure concentration arises. Orabona et al. (2014) and Hazan et al. (2019) proved that
samples of max-perturbations do indeed concentrate in the low-rank setting. Thanks to
the perspective of applying the standard Gumbel trick to a rescaled potential function,
these results directly translate to the low-rank bounds on Rényi entropies from the
preceding section.
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Continuos case

Maddison et al. (2014) generalized Gumbel trick sampling to continuous distributions:
the log-unnormalized density ϕ is additively perturbed by a continuous generalization
γ of the Gumbel trick, called the Gumbel process, and a variant of A* search is used
to find the location of the maximum of the perturbed ϕ + γ. This location is an
exact sample from the original Gibbs distribution p ∝ eϕ, as in the discrete Gumbel
trick. Analogously, the corresponding maximum value follows the Gumbel(−c+ lnZ)
distribution (Maddison et al., 2014), where Z is the normalized of the unnormalized
density eϕ.

The mathematics of Equations (3.6-3.8) applies unchanged when the summation
over a discrete space is replaced by integration over a continuous X . The quantity
being thus estimated is sometimes called the differential Rényi entropy. As in the
discrete setting, apart from its own uses it can also be used to estimate the (differential)
Shannon entropy.

3.4 Shannon Entropy Estimation

Since the Rényi entropy Hα(p) of a fixed distribution p is non-decreasing in α, and
α = 1 corresponds to the Shannon entropy H1(p), one can estimate the latter both
from below and from above using Rényi entropies: Hα2(p) ≤ H1(p) ≤ Hα1(p) for all
α1 ∈ [0, 1), α2 ∈ (1,∞]. The Gumbel trick approaches from Section 3.3 can be used
to estimate Hα1(p) and Hα2(p), and as α1 ↑ 1 and α2 ↓ 1 the error due to the Rényi
approximation vanishes. However, when using the normalized case estimators there
is a trade-off: as α→ 1, the estimator variance diverges to ∞. Perhaps surprisingly,
the control variate from Section 3.3.1 can be used to stabilize the estimator as α→ 1.
In fact, we shall see that in the limit α→ 1 our Rényi entropy estimators recover the
Gumbel trick estimator of the Shannon entropy due to Maji et al. (2014).

3.4.1 Relationship to the Maji et al. (2014) Estimator

Maji et al. (2014) have shown that the value of the perturbation at the argmax location
x∗ can be used as an unbiased estimator Ĥ1 := γ(x∗) of the Shannon entropy:

E
[
Ĥ1
]

= E [γ(x∗)] = H1(p) where x∗ = argmax
x∈X

{ϕ(x) + γ(x)} . (3.17)
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In this section we set out to answer the natural question of how our Rényi entropy
estimators Ĥα (with α ∈ (0, 1) ∪ (1,∞)) relate to the Shannon entropy estimator Ĥ1.

Proposition 9. As α→ 1, our variance-reduced Rényi entropy estimator Ĥα converges
almost surely to Maji’s Shannon entropy estimator Ĥ1 based on the same Gumbel
perturbations.

Proof. By linearity, it suffices to show the result for the estimators based on M = 1
samples. Let Ω1 ⊆ Ω be a subset of the probability space with P(Ω1) = 1 such that for
all ω ∈ Ω1, the argmax defining x∗ in Equation (3.17) is unique. On this subset of the
probability space, for all α close enough to 1, we have that

argmax
x∈X

{
ϕ(x) + 1

α
γ(x)

}
= argmax

x∈X
{ϕ(x) + γ(x)} =: x∗, (3.18)

and therefore for these values of α,

Ĥα(p) := α

1− α

[
max
x∈X

{
ϕ(x) + 1

α
γ(x)

}
−max

x∈X
{ϕ(x) + γ(x)}

]
(3.19)

= α

1− α

[{
ϕ(x∗) + 1

α
γ(x∗)

}
− {ϕ(x∗) + γ(x∗)}

]
(3.20)

= α

1− α
1− α
α

γ(x∗) = γ(x∗) = Ĥ1(p), (3.21)

and so the claim follows.

This implies that the stochastic process {Ĥα | α ≥ 0} has continuous sample paths
almost surely. Its boundary values are marginally distributed as Ĥ0 ∼ Gumbel(−c+
lnN) and Ĥ∞ ∼ Gumbel(−c − ln maxx∈X p(x)), but intermediate values are not
necessarily marginally Gumbel. Figure 3.1 shows M = 30 sample paths on a synthetic,
truncated geometric distribution p.

3.4.2 Variance of the Maji et al. (2014) Estimator

In this section we provide a new result about the Ĥ1 estimator, namely its variance.
Recall from (Maddison, 2016) and Chapter 2 that the Gumbel trick theory can be
developed using the classical notion of competing exponential clocks. In particular,
the sampling result follows from the fact that the first clock to ring is distributed
proportionally to the rates of the individual clocks, and the partition function estimation
result follows from the fact that the time of the first ring has Exp(Z) distribution,
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Fig. 3.1 Estimates of α-Rényi entropy for varying values of α, computed on a synthetic
geometric distribution with success probability q = 0.3, truncated to {1, 2, . . . , 500} and
normalized. The exact value of the entropies is plotted in thick black. M = 30 sets of
random perturbations have been sampled. For each set, the (Maji et al., 2014) estimate
of the Shannon entropy is plotted at α = 1 in green, and the sample paths across varying
α of the normalized case Rényi entropy estimator (without the control variate, shown in
blue) and with the control variate (Section 3.3.1, shown in red) are plotted. As predicted by
Proposition 9 the latter sample paths pass through the (Maji et al., 2014) estimates at α = 1.

where Z is the sum of the clock rates. However, it is additionally true that the identity
of the first clock to ring and the first ringing time are independent random variables.
This additional property allows us to compute the variance of the Shannon entropy
estimator Ĥ1.

Theorem 9. Let p be a discrete probability distribution. The variance of the Shannon
entropy estimator Ĥ1 based on (Maji et al., 2014) is

var
[
Ĥ1
]

= π2

6 + varX∼p [ln p(X)] . (3.22)

Proof. By Eve’s law (Law of Total Variance) we have after conditioning on x∗ that

var
[
Ĥ1
]

= var [γ(x∗)] = E [var [γ(x∗) | x∗]] + var [E [γ(x∗) | x∗]] . (3.23)

By independence, given x∗, the value of the maximum is still distributed according to
ϕ(x∗) + γ(x∗) ∼ Gumbel(−c− lnZ) and therefore γ(x∗) has conditional expectation
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lnZ − ϕ(x∗) and conditional variance π2

6 . Plugging into Equation (3.23),

var
[
Ĥ1
]

= E
[
π2

6

]
+ varx∗ [lnZ − ϕ(x∗)] = π2

6 + varX∼p [ln p(X)] . (3.24)

Remark. Note that the estimator Ĥ1 is directly applicable if the normalisation of
p is unknown. The right-hand side of Equation (3.22) thus admits the following
interpretation:

1. The first term π2

6 is the cost of not knowing the normalisation of p; it equals the
variance of the Gumbel trick estimator of lnZ.

2. The second term varX∼p [ln p(X)] is the variance of the following estimator Ĥ
for the Shannon entropy of a normalised distribution: sample X ∼ p and set
Ĥ := − ln p(X). (This is unbiased by definition of Shannon entropy.)

3.5 Discussion and Future Work

We showed how the Gumbel trick can be cleanly extended from partition function
estimation to Rényi entropy estimation. Thanks to the simple form of the extension,
most developments from the Gumbel trick literature carry over to the Rényi entropy
estimation setting. These include stochastic bounds in low-rank approximations for
discrete graphical models (Hazan and Jaakkola, 2012; Hazan et al., 2013), measure
concentration results for these approximations (Orabona et al., 2014), extensions to the
continuous case (based on A∗ sampling, Maddison et al., 2014) and to other relatives
of the Gumbel trick (Chapter 2). We studied the statistical properties of the derived
estimators of the Rényi entropy, and characterized their relationship to the Gumbel
trick-based estimator of the Shannon entropy due to Maji et al. (2014). Along the
way we have also added to the understanding of properties of this Shannon entropy
estimator.

Future work This chapter has focused on tackling a specific class of integration
problems (Rényi entropy estimation) by generalizing a specific class of partition
function estimation methods (the Gumbel trick and its “relatives”) in order to obtain
optimization problems with more appealing properties (at least in the specific situations
where the original Gumbel trick is also useful). The presented ideas can be taken
further by challenging either of these two choices:
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• Other integrals
The Rényi entropy is a particular integral over X , where it so happens that one
only needs to rescale the potential function in order to apply the Gumbel trick.
However, (the logarithm of) an arbitrary integral I := ∑

x∈X p(x)f(x) can be
rewritten as

ln I = ln
∑
x∈X

p(x)f(x) = Eγ

[
max
x∈X
{ln p(x) + ln f(x) + γ(x)}

]
, (3.25)

where {γ(x)}x∈X
iid∼ Gumbel(−c), and this can be estimated whenever the maxi-

mization inside the expectation is tractable. (Relatives of the Gumbel trick can
be used to estimate transformations of I other than its logarithm.) α-Rényi
entropy estimation corresponds to the special case f(x) = p(x)α−1, which results
in a simple rescaling of the potential function, thus making the maximisation
tractable whenever the standard Gumbel trick would apply. An interesting
avenue of future work could be exploring other classes of functions f for which
the maximisation remains tractable in specific situations.

• Other partition function estimators
The Rényi entropy can always be expressed as

Hα(p) = 1
1− α ln

∑
x∈X

p(x)α = 1
1− α ln

∑
x∈X

p̃(x)α − α

1− α lnZ (3.26)

= 1
1− α lnZα −

α

1− α lnZ, (3.27)

where Zα := ∑
x∈X p̃(x)α = ∑

x∈X e
αϕ(x) is the partition function of the distri-

bution with potential function rescaled by α. Therefore any partition function
estimation method that is capable of handling a rescaled potential function can
be used to estimate the Rényi entropy using Equation (3.27). We have focused
on the Gumbel trick, which (1) yields unbiased estimators in the full-rank setting
and two-sided bounds in the low-rank setting, and (2) where randomness can be
usefully shared between estimators of lnZα and lnZ in order to decrease variance
(Proposition 8). Exploring other partition function estimation methods and in
particular studying options for sharing computation between estimators of Zα

and Z can be another interesting avenue of future work.
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As with all applications of the Gumbel trick, practical usefulness is restricted
to specific cases where the structure of the problem permits fast discovery of MAP
solutions, or the computational complexity is dominated by a different component of the
overall algorithm. This chapter presented the theoretical foundation of extending the
Perturb-and-MAP framework to the integration problem of Rényi entropy estimation.
An empirical evaluation of the degree to which the presented estimators are useful in
various application settings is left for future work.





Chapter 4

Differentially Private Database
Release

Chapter abstract In this chapter we lay theoretical foundations for new database
release mechanisms that allow third-parties to construct consistent estimators of
population statistics, while ensuring that the privacy of each individual contributing
to the database is protected. The proposed framework rests on two main ideas. First,
releasing (an estimate of) the kernel mean embedding (Smola et al., 2007) of the data
generating random variable instead of the database itself still allows third-parties to
construct consistent estimators of a wide class of population statistics. Second, the
algorithm can satisfy the definition of differential privacy (Dwork and Roth, 2014) by
basing the released kernel mean embedding on entirely synthetic data points, while
controlling accuracy through the metric available in a Reproducing Kernel Hilbert Space
(RKHS). Computationally, the framework leads to a class of optimization problems,
where synthetic data points are optimized to minimize an RKHS distance. We describe
two instantiations of the proposed framework, suitable under different scenarios, and
prove theoretical results guaranteeing differential privacy of the resulting algorithms
and the consistency of estimators constructed from their outputs.

4.1 Introduction

With the work presented in this chapter we aim to contribute to the body of research
on the trade-off between releasing datasets from which publicly beneficial statistical
inferences can be drawn, and between protecting the privacy of individuals who
contribute to such datasets. Currently the most successful formalisation of protecting
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user privacy is provided by differential privacy (Dwork and Roth, 2014), which is a
definition that any algorithm operating on a database may or may not satisfy. An
algorithm that does satisfy the definition ensures that a particular individual does not
lose too much privacy by deciding to contribute to the database on which the algorithm
operates.

While differentially private algorithms for releasing entire databases have been
studied previously (Blum et al., 2008; Wasserman and Zhou, 2010; Zhou et al., 2009),
most algorithms focus on releasing a privacy-protected version of a particular summary
statistic, or of a statistical model trained on the private dataset. In this work we revisit
the more difficult non-interactive, or offline setting, where the database owner aims
to release a privacy-protected version of the entire database without knowing what
statistics third-parties may wish to compute in the future.

In our new framework we propose to use the kernel mean embedding (Smola et al.,
2007) as an intermediate representation of a database. It is (1) sufficiently rich in the
sense that it captures a wide class of statistical properties of the data, while at the
same time (2) it lives in a Reproducing Kernel Hilbert Space (RKHS), where it can be
handled mathematically in a principled way and privacy-protected in a unified manner,
independently of the type of data appearing in the database. Although kernel mean
embeddings are functions in an abstract Hilbert space, in practice they can be (at least
approximately) represented using a possibly weighted set of data points in input space
(i.e. a set of database rows). The privacy-protected kernel mean embedding is released
to the public in this representation, however, using synthetic datapoints instead of the
private ones. As a result, our framework can be seen as leading to synthetic database
algorithms.

Since the kernel mean embedding is a mathematical representation of the entire
private database and it can be privacy-protected by suitable random perturbation
within an RKHS, our framework shifts the computational burden from sampling a
synthetic database (Blum et al., 2008) to the optimization problem of finding synthetic
datapoints that minimize the RKHS distance to the perturbed kernel mean embedding.
This problem transformation is useful because in specific settings the optimization can
be easier to solve, and in general it possesses the anytime property whereby computation
time and accuracy can be traded off while the differential privacy guarantee is always
preserved.

We validate our approach by instantiating two concrete algorithms and proving
that they output consistent estimators of the true kernel mean embedding of the
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data generating process, while satisfying the definition of differential privacy. The
consistency results ensure that third-parties can carry out a wide variety of statistically
founded computation on the released data, such as constructing consistent estimators
of population statistics, estimating the Maximum Mean Discrepancy (MMD) between
distributions, and two-sample testing (Gretton et al., 2012), or using the data in the
kernel probabilistic programming framework for random variable arithmetics (Schölkopf
et al., 2015; Simon-Gabriel et al., 2016, Section 3), repeatedly and unlimitedly without
being able to, or having to worry about, violating user privacy.

One of our algorithms is especially suited to the interesting scenario where a (small)
subset of a database has already been published, a setting also considered by Ji and
Elkan (2013). This situation can arise in a wide variety of settings, for example,
due to weaker privacy protections in the past, due to a leak, or due to the presence
of an incentive, financial or otherwise, for users to publish their data. In such a
situation our algorithm provides a principled approach for reweighting the public
data in such a way that the accuracy of statistical inferences on this dataset benefits
from the larger sample size (including the private data), while maintaining differential
privacy for the undisclosed data. Moreover, the optimization problem of minimizing
the RKHS distance (here by tweaking the datapoint weights) can be solved analytically
in this case.

In summary, the contributions of this chapter are:

1. A new framework for designing database release algorithms with the guarantee of
differential privacy. The framework uses kernel mean embeddings as intermediate
database representations, so that the RKHS metric can be used to control
accuracy of the released synthetic database in a principled manner (Section 4.3).

2. Two instantiations of our framework in the form of two synthetic database
algorithms, with proofs of their consistency, convergence rates and differential
privacy, as well as basic empirical illustrations of their performance on synthetic
datasets (Sections 4.4 and 4.5).

4.2 Background

4.2.1 Differential Privacy

Definition 2 (Dwork, 2006). For ε > 0, δ ≥ 0, an algorithm A is said to be (ε, δ)-
differentially private if for all neighbouring databases D ∼ D′ (differing in at most one
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element) and all measurable subsets S of the co-domain of A,

P (A(D) ∈ S) ≤ eεP (A(D′) ∈ S) + δ. (4.1)

The parameter ε controls the amount of information the algorithm can leak about
an individual, while a positive δ allows the algorithm to produce an unlikely output that
leaks more information, but only with probability up to δ. This notion is sometimes
called approximate differential privacy; an algorithm that is (ε, 0)-differentially private
is simply said to be ε-differentially private. Note that any non-trivial differentially
private algorithm must be randomised; the definition asserts that the distribution of
algorithm outputs is not too sensitive to changing one row in the database.

When the algorithm’s output is a finite vector A(D) ∈ RJ , two standard random
perturbation mechanisms for making this output differentially private are the Laplace
and Gaussian mechanisms. As the perturbation needs to mask the contribution of
each individual entry of the database D, the scale of the added noise is closely linked
to the notion of sensitivity, measuring how much the algorithm’s output can change
due to changing a single data point:

∆1 := sup
D∼D′

∥A(D)−A(D′)∥1 , (4.2)

∆2 := sup
D∼D′

∥A(D)−A(D′)∥2 . (4.3)

The Laplace mechanism adds i.i.d. Lap(∆1/ε) noise to each of the J coordinates of the
output vector and ensures pure ε-differential privacy, while the Gaussian mechanism
adds i.i.d. N (0, σ2) noise to each coordinate, where σ2 > 2∆2

2 ln(1.25/δ)/ε2, and ensures
(ε, δ)-differential privacy. Applying these mechanisms thus requires computing (an
upper bound on) the relevant sensitivity.

Differential privacy is preserved under post-processing: if an algorithm A is (ε, δ)-
differentially private, then so is its sequential composition B(A(·)) with any other
algorithm B that does not have direct or indirect access to the private database
D (Dwork and Roth, 2014).

4.2.2 Kernels, RKHS, and Kernel Mean Embeddings

A kernel on a non-empty set (data type) X is a binary symmetric positive-definite
function k(·, ·) : X × X → R. Intuitively it can be thought of as expressing the
similarity between any two elements in X . The literature on kernels is vast and their
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properties are well studied (Schölkopf and Smola, 2002); many kernels are known for a
large variety of data types such as vectors, strings, time series, graphs, etc, and kernels
can be composed to yield valid kernels for composite data types (e.g. the type of a
database row containing both numerical and string data).

The kernel mean embedding (KME) of an X -valued random variable X in the RKHS
is the function µk

X : X → R, y 7→ EX [k(X, y)], defined whenever EX [
√
k(X,X)] <

∞ (Smola et al., 2007). Several popular kernels have been proved to be character-
istic (Fukumizu et al., 2008), in which case the map pX 7→ µk

X , where pX is the
distribution of X, is injective. This means that no information about the distribution
of X is lost when passing to its KME µk

X .
In practice, the KME of a random variable X is approximated using a sample

x1, . . . , xN drawn from X, which can be used to construct an empirical KME µ̂k
X of

X in the RKHS: a function given by y 7→ 1
N

∑N
n=1 k(xn, y). When the xn’s are i.i.d.,

under a boundedness condition µ̂k
X converges to the true KME µk

X at rate Op(N−1/2),
independently of the dimension of X (Lopez-Paz et al., 2015)1. Our approach relies
on the metric of the RKHS in which these KMEs live. The RKHS Hk is a space of
functions, endowed with an inner product ⟨·, ·⟩Hk

that satisfies the reproducing property
⟨k(x, ·), h⟩ = h(x) for all x ∈ X and h ∈ Hk. The inner product induces a norm ∥ · ∥Hk

,
which can be used to measure distances ∥µk

X − µk
Y ∥Hk

between distributions of X and
Y . This can be exploited for various purposes such as two-sample tests (Gretton et al.,
2012), independence testing (Gretton et al., 2005), or one can attempt to minimise
this distance in order to match one distribution to another.

An example of such minimisation are reduced set methods (Burges, 1996; Schölkopf
and Smola, 2002, Chapter 18), which replace a set of points S = {x1, . . . , xN} ⊆ X
with a weighted set R = {(z1, w1), . . . , (zM , wM )} ⊆ X ×R (of potentially smaller size),
where the new points zm can, but need not equal any of the xns, such that the KME
computed using the reduced set R is close to the KME computed using the original set
S, as measured by the RKHS norm:

∥∥∥µk
S − µk

R

∥∥∥
Hk

=
∥∥∥∥∥ 1
N

N∑
n=1

k(xn, ·)−
M∑

m=1
wmk(zm, ·)

∥∥∥∥∥
Hk

.

1The KME can be viewed as a smoothed version of the density, which is easier to estimate than
the density itself; rates of nonparametric density estimation or statistical powers of two-sample or
independence tests involving pX are known to necessarily degrade with growing dimension (Tolstikhin
et al., 2017, Section 4.3).
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Reduced set methods are usually motivated by the computational savings arising when
|R| < |S|; we will invoke them mainly to replace a collection S of private data points
with a (possibly weighted) set R of synthetic data points.

4.3 Framework

4.3.1 Problem Formulation

Throughout this chapter, we assume the following setup. A database curator wishes to
publicly release a database D = {x1, . . . xN} ∈ XN containing private data about N
individuals, with each data point (database row) xn taking values in a non-empty set X .
The set X can be arbitrarily rich, for example, it could be a product of Euclidean spaces,
integer spaces, sets of strings, etc.; we only require availability of a kernel function
k : X ×X → R on X . We assume that the N rows x1, . . . , xN in the database D can be
thought of as i.i.d. observations from some X -valued data-generating random variable
X (but see Section 4.7 for a discussion about relaxing this assumption). The database
curator, wishing to protect the privacy of individuals in the database, seeks a database
release mechanism that satisfies the definition of (ε, δ)-differential privacy, with ε > 0
and δ ≥ 0 given. The main purpose of releasing the database is to allow third parties
to construct estimators of population statistics (i.e. properties of the distribution of
X), but it is not known at the time of release what statistics the third-parties will be
interested in.

To lighten notation, henceforth we drop the superscript k from KMEs (such as µk
X)

and the subscript k from the RKHS Hk, whenever k is the kernel on X chosen by the
database curator.

4.3.2 Algorithm Template

We propose the following general algorithm template for differentially private database
release:

1. Construct a consistent estimator µ̂X of the KME µX of X using the private
database.

2. Obtain a perturbed version µ̃X of the constructed estimate µ̂X to ensure differ-
ential privacy.
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3. Release a (potentially approximate) representation of µ̃X in terms of a (possibly
weighted) dataset {(z1, w1), . . . , (zM , wM)} ⊆ X × R.

The released representation should be such that ∑M
m=1 wmk(zm, ·) is a consistent estima-

tor of the true KME µX , i.e. such that the RKHS distance between the two converges
to 0 in probability as the private database size N , and together with it the synthetic
database size M , go to infinity.

Each step of this template admits several possibilities. For the first step we have dis-
cussed the standard empirical KME 1

N

∑N
n=1 k(xn, ·) with x1, . . . , xN i.i.d. observations

of X, but the framework remains valid with improved estimators such as kernel-based
quadrature (Chen et al., 2010) or the shrinkage kernel mean estimators of (Muandet
et al., 2016).

As the KMEs µ̂X and µX live in the RKHS H of the kernel k, a natural mechanism
for privatising µ̂X in the second step would be to follow (Hall et al., 2013) and add
pointwise to µ̂X a suitably scaled sample path g of a Gaussian process with covariance
function k(·, ·). This does ensure (ε, δ)-differential privacy of the resulting function
µ̃X = µ̂X + g, but unfortunately µ̃X ̸∈ H, because the RKHS norm ∥g∥H of a Gaussian
process sample path with the same kernel k is infinite almost surely (Rasmussen and
Williams, 2005). While our framework allows pursuing this direction by, for example,
moving to a larger function space that does contain the Gaussian process sample path,
in this work we will present algorithms that achieve differential privacy by mapping
µ̂X into a finite-dimensional Hilbert space and then employing the standard Laplace or
Gaussian mechanisms on the finite coordinate vector.

Differential privacy is preserved under post-processing, but the third step does
require some care to ensure that private data is not leaked. Specifically, when several
possible (approximate) representations µ̃X ≈

∑M
m=1 wmk(zm, ·) in terms of a weighted

dataset (w1, z1), . . . , (wM , zM) are possible, committing to a particular one reveals
more information than just the function µ̃X (consider, for example, the extreme case
where the representation would be in terms of the private points x1, . . . , xN ). One thus
needs to either control the privacy leak due to choosing a representation in a way that
depends on the private data, or, as we do in our concrete algorithms below, choose
a representation independently of the private data (but still minimising its RKHS
distance to the privacy-protected µ̃X).
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4.3.3 Versatility

Algorithms in our framework release a possibly weighted synthetic dataset

{(z1, w1), . . . , (zM , wM)} ⊆ X × R (4.4)

such that ∑M
m=1 wmk(zm, ·) is a consistent estimator of the true KME µX of the data

generating random variable X. This allows third-parties to perform a wide spectrum
of statistical computation, all without having to worry about violating differential
privacy:

1. Kernel probabilistic programming (Schölkopf et al., 2015): The versatility of
our approach is greatly expanded thanks to the result of (Simon-Gabriel et al.,
2016), who showed that under technical conditions, applying a continuous func-
tion f to all points zm in the synthetic dataset yields a consistent estimator∑M

m=1 wmkf (f(zm), ·) of the KME µf(X) of the transformed random variable f(X),
even when the points z1, . . . , zM are not i.i.d. (as they may not be, depending on
the particular synthetic database release algorithm).

2. Consistent estimation of population statistics: For any RKHS function h ∈ H,
we have ⟨µX , h⟩H = E[h(X)], so a consistent estimator of µX yields a consistent
estimator of the expectation of h(X). It can be evaluated using the reproducing
kernel property:

E[h(X)] = ⟨µX , h⟩H ≈
〈

M∑
m=1

wmk(zm, ·), h
〉

H
=

M∑
m=1

wmh(zm). (4.5)

For example, approximating the indicator function 1S of a set S ⊆ X with
functions in the RKHS allows estimating probabilities: E[1S(X)] = P[X ∈ S]
(note that 1S itself may not be an element of the RKHS).

3. MMD estimation and two-sample testing (Gretton et al., 2012): Given another
random variable Y on X , one can consistently estimate the Maximum Mean
Discrepancy (MMD) distance ∥µX − µY ∥H between the distributions of X and
Y , and in particular construct a two-sample test based on this distance. Given a
sample y1, . . . , yL ∼ Y :

∥µX − µY ∥H ≈
∥∥∥∥∥

M∑
m=1

wmk(zm, ·)−
1
L

L∑
l=1

k(yl, ·)
∥∥∥∥∥

H

, (4.6)
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which can again be evaluated using the reproducing property.

4. Subsequent use of synthetic data: Since the output of the algorithm is a (possibly
weighted) database, third-parties are free to use this data for arbitrary purposes,
such as training any machine learning model on this data. Models trained purely
on this data can be released with differential privacy guaranteed; however, the
accuracy of such models on real data remains an empirical question that is beyond
the scope of this work.

An orthogonal spectrum of versatility arises from the fact that the third step in
the algorithm template can constrain the released dataset (z1, w1), . . . , (zM , wM ) to be
more convenient or more computationally efficient for further processing. For example,
one could fix the weights to uniform wm = 1

M
to obtain an unweighted dataset, or to

replace an expensive data type with a cheaper subset, such as requesting floats instead
of doubles in the zm’s. All this can be performed while an RKHS distance is available
to control accuracy between µ̃X and its released representation.

4.3.4 Concrete Algorithms

As a first illustrative example, we describe how a particular case of an existing, but
inefficient synthetic database algorithm already fits into our framework. The exponential
mechanism (McSherry and Talwar, 2007) is a general mechanism for ensuring ε-
differential privacy, and in our setting it operates as follows: given a similarity measure
s : XN × XM → R between (private) databases of size N and (synthetic) databases
of size M , output a random (synthetic) database R with probability proportional to
exp( ε

2∆1
s(D,R)), where D is the actual private database and ∆1 is the L1 sensitivity

of s w.r.t. D. This ensures ε-differential privacy (McSherry and Talwar, 2007).
This instantiation of the exponential mechanism already fits into our framework by

taking s(D,R) = −∥µD − µR∥H to be the negative RKHS distance between the KMEs
computed using D and R, and ε-differential privacy is achieved by releasing R with
probability proportional to exp(− ε

2∆1
∥µD − µR∥H). This procedure solves steps 2 and

3 of our general algorithm template simultaneously, as it directly samples a concrete
representation of a “perturbed” KME µR. The algorithm essentially corresponds to
the SmallDB algorithm of Blum et al. (2008), except for choosing the RKHS distance
as a well-studied similarity measure between two databases.

The principal issue with this algorithm is its computational infeasibility except in
trivial cases, as it requires sampling from a probability distribution supported on all
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potential synthetic databases, and employing an approximate sampling scheme can
break the differential privacy guarantee of the exponential mechanism. In Sections 4.4
and 4.5 respectively, we describe two concrete synthetic database release algorithms that
may possess failure modes where they become inefficient, but employing approximations
in those cases can only affect their statistical accuracy, not the promise of differential
privacy.

Algorithm 2 Differentially private database release via a synthetic data subspace
Input: database D = {x1, . . . , xN} ⊆ X , kernel k on X , privacy specs ε > 0, δ > 0
Output: (ε, δ)-differentially private, weighted synthetic database (estimating µX)

1: M ←M(N) ∈ ω(1) ∩ o(N2), number of synthetic data points to use
2: z1, . . . , zM ← initialise deterministically or randomly from a distribution q on X
3: HM ← Span({k(z1, ·), . . . , k(zM , ·)}) ≤ H
4: b1, . . . , bF ← orthonormal basis of HM (obtained using the Gram-Schmidt process)

5: µ̂X ← 1
N

∑N
n=1 k(xn, ·), empirical KME of X in H

6: µX ←
∑F

f=1⟨bf , µ̂X⟩Hbf =: ∑F
f=1 αfbf , projection of µ̂X onto HM

7: β ← α+N (0, 8 ln(1.25/δ)
N2ε2 IF ), an (ε, δ)-DP version of coordinates α (Gaussian mech.)

8: µ̃X ←
∑F

f=1 βfbf = ∑M
m=1 wmk(zm, ·), re-expressed in terms of k(zm, ·)’s

9: return (z1, w1), . . . , (zM , wM)

4.4 Perturbation in Synthetic-Data Subspace

In this section we describe an instantiation of the framework proposed in Section 4.3
that achieves differential privacy of the KME by projecting it onto a finite-dimensional
subspace of the RKHS spanned by feature maps k(zm, ·) of synthetic data points
z1, . . . , zM , and perturbing the resulting finite coordinate vector. To ensure differential
privacy, the synthetic data points are chosen independently of the private database.
As a result, statistical efficiency of this approach will depend on the choice of synthetic
data points, with efficiency increasing if there are enough synthetic data points to
capture the patterns in the private data. Therefore this algorithm is especially suited
to the scenario discussed in Section 4.1, where some part of the database (or of a
similar one) has already been published, as this can serve as a good starting set for the
synthetic data points.

The setting where some observations from X have already been released highlights
the fact that differential privacy only protects against additional privacy violation due
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to an individual deciding to contribute to the private database; if a particular user’s
data has already been published, differential privacy does not protect against privacy
violations based on exploiting this previously published data.

The algorithm is formalised as Algorithm 2 above. Lines 1-2 choose synthetic data
points z1, . . . , zM independently of the private data (only using the database size N).
Lines 3-4 construct the linear subspace HM of H spanned by feature maps of the chosen
synthetic data points, and compute a (finite) basis for it. Only then the private data
is accessed: the empirical KME µ̂X is computed (line 5), projected onto the subspace
HM and expressed in terms of the precomputed basis (line 6). The basis coefficients of
the projection are then perturbed using the Gaussian mechanism to achieve differential
privacy (line 7), and the perturbed element µ̃X ∈ HM is then re-expressed in terms
of the spanning set containing feature maps of synthetic data points (line 8). This
expansion is finally released to the public (line 9).

Line 1 stipulates that the number of synthetic data points M →∞ as N →∞, but
asymptotically slower than N2. This is to ensure that the privatisation noise added in
the subspace HM to each coordinate is small enough overall to preserve consistency, as
stated in the following Theorem 10. This theorem assures us that Algorithm 2 produces
a consistent estimator of the true KME µX , if the synthetic data points are sampled
from a distribution with sufficiently large support. All proofs appear in Appendix C.1.

Theorem 10. Let X be a compact metric space and k a continuous kernel on X . If the
synthetic data points z1, z2, . . . are sampled i.i.d. from a distribution q on X such that
the support of X is included in the support of q, then Algorithm 2 outputs a consistent
estimator of the KME µX , i.e. ∑M

m=1 wmk(zm, ·) P→ µX as N →∞.

As discussed by Simon-Gabriel et al. (2016), these assumptions are usually satisfied:
X can be taken to be compact whenever the data comes from measurements with
any bounded range, and many kernels are continuous, including all kernels on discrete
spaces (w.r.t. to the discrete topology).

In order to use the output of Algorithm 2 in the very general kernel probabilistic
programming framework and obtain a consistent estimator of the KME µf(X) of
f(X) for any continuous function f , there is a technical condition that the L1 norm∑M

m=1 |wm| of the released weights may need to remain bounded by a constant as
N → ∞ (Simon-Gabriel et al., 2016). This is not enforced by Algorithm 2, but
Theorem 13 in Appendix C.1.1 shows how a simple regularisation in the final stage of
the algorithm achieves this without breaking consistency (or privacy).
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The next result about Algorithm 2 shows that it is differentially private whenever
k(x, x) ≤ 1 for all x ∈ X . This is a weak assumption that holds for all normalised
kernels, and can be achieved by simple rescaling for any bounded kernel (such that
supx∈X k(x, x) < ∞). When X is a compact domain, all continuous kernels are
bounded.

Proposition 10. If k(x, x) ≤ 1 for all x ∈ X , then Algorithm 2 is (ε, δ)-differentially
private.

Remark. One usually requires that δ decreases faster than polynomially with the
database size N (Dwork and Roth, 2014). The proof of Theorem 10 remains valid
whenever M(N) ∈ o(N2/ ln(1.25/δ(N))), so for example we could have δ(N) = e−

√
N

and M(N) ∈ o(N3/2).

For a finite private database, actual performance will heavily depend on how the
synthetic data points are chosen. We consider the following two extreme scenarios:

1. No publishable subset: No rows of the private database are, or can be made public
unmodified.

2. Publishable subset: A small proportion of the private database is already public,
or can be made public.

Proposition 11 (Algorithm 1, No publishable subset). Say X is a bounded subset
of RD, the kernel k is Lipschitz, and the synthetic data points z1, z2, . . . are sampled
i.i.d. from a distribution q with density bounded away from 0 on any bounded subset
of RD. Then M = M(N) can be chosen so that the output of Algorithm 2 converges
to the true KME µX in RKHS norm at a rate Op(N−1/(D+1+c)), where c is any fixed
positive number c > 0.

Unsurprisingly, the convergence rate deteriorates with input dimension D, since
without prior information about the private data manifold it is increasingly difficult
for randomly sampled synthetic points to capture patterns in the private data. One
of the main strengths of KMEs is that the empirical estimator converges to the true
embedding at a rate Op(N−1/2) independently of the input dimension D, so we see
that in this unfavourable scenario Algorithm 2 incurs a substantial privacy cost in high
dimensions. On the other hand, if a small, but fixed proportion of the private database
is publishable, then Algorithm 2 incurs no privacy cost in terms of the convergence
rate:



4.4 Perturbation in Synthetic-Data Subspace 81

1
(0.001%)

10
(0.01%)

100
(0.1%)

1000
(1.0%)

10000
(10.0%)

M (number of public data points)

10−4

10−3

10−2

10−1

100

RK
HS

 d
ist

an
ce

 ||
̂ μ X

−
⋅|

| 

projection distance
Algorithm 2, ε= 0.01
Algorithm 2, ε= 0.1
Algorithm 2, ε= 1.0
baseline (uniform weights)

1
(0.001%)

10
(0.01%)

100
(0.1%)

1000
(1.0%)

10000
(10.0%)

M (number of public data points)

10−4

10−3

10−2

10−1

100

RK
HS

 d
ist

an
ce

 ||
̂ μ X

−
⋅|

| 

projection distance
Algorithm 2, ε= 0.01
Algorithm 2, ε= 0.1
Algorithm 2, ε= 1.0
baseline (uniform weights)

Fig. 4.1 RKHS distance (lower is better) to the (private) empirical KME µ̂X computed using
the entire private database of size N = 100, 000. The dimension of the database was D = 2
(left) or D = 5 (right); please see Appendix C.2 for further details of the setup. Horizontally
we varied M , the number of publicly releasable data points. Stricter privacy requirements
(lower ε) naturally lead to lower accuracy. Increasing M does not always necessarily improve
accuracy, since a new public data point always increases the total amount of privatising noise
that needs to be added, but this might not be outweighed by its positive contribution towards
covering relevant parts of the input space. In all cases, for sufficiently small M Algorithm 2
provided a more accurate estimate than µbaseline.

Proposition 12 (Algorithm 1, Publishable subset). Say that a fixed proportion η of
the private database can be published unmodified. Using this part of the database as the
synthetic data points, Algorithm 2 outputs a consistent estimator of µX that converges
in RKHS norm at a rate Op(N−1/2).

Note that in this scenario differential privacy and the rate Op(N−1/2) can be
also achieved by uniform weighting of the synthetic data points, as µ̂baseline :=
1

M

∑M
m=1 k(zm, ·) with zm = xm is already a consistent estimator of µX (although

based on a much smaller sample size M = ηN ≪ N). The purpose of Algorithm 2
is to find (generally non-uniform) w1, . . . , wM that reweight the public data points
using the information in the large private dataset, but respecting differential privacy.
Proposition 12 confirmed theoretically that this does not hurt the convergence rate,
while Figure 4.1 shows empirically on two synthetic datasets of dimensions D = 2
and D = 5 that Algorithm 2 can in fact yield more accurate estimates of the KME
than µ̂baseline, especially when the proportion of public data points is small. This is
encouraging, since obtaining permission to publish a larger subset of the private data
unchanged will usually come at an increased cost. The ability to instead reweight a
smaller public dataset in a differentially private manner using Algorithm 2 is therefore
useful.
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Algorithm 3 Differentially private database release via a random features RKHS
Input: database D = {x1, . . . , xN} ⊆ X , kernel k on X , privacy specs ε > 0, δ > 0
Output: (ε, δ)-differentially private, weighted synthetic database (estimating µX)

1: J ← J(N) ∈ ω(1) ∩ o(N2), number of random features to use
2: ϕ← random feature map X 7→ RJ for kernel k with J features
3: µ̂ϕ

X ← 1
N

∑N
n=1 ϕ(xn) ∈ RJ , empirical KME of X in the RKHS Hϕ of the random

features kernel kϕ(·, ·) := ϕ(·)Tϕ(·)
4: µ̃ϕ

X ← µ̂ϕ
X +N (0, 8 ln(1.25/δ)

N2ε2 IJ), an (ε, δ)-DP version of µ̂ϕ
X (Gaussian mechanism)

5: M ← M(N) ≥ N , number of synthetic expansion points to use for representing
µ̃ϕ

X

6: (z1, w1), . . . , (zM , wM)← approximate µ̃ϕ
X in Hϕ using a Reduced set method:

(z1, w1), . . . , (zM , wM) ≈ argmin
(z′

1,w′
1),...,(z′

M ,w′
M ) s.t.

∑
m

|w′
m|≤1

∥∥∥∥∥
M∑

m=1
w′

mϕ(z′
m)− µ̃ϕ

X

∥∥∥∥∥
Hϕ

(4.7)
7: return (z1, w1), . . . , (zM , wM)

4.5 Perturbation in Random-Features RKHS

Another approach to ensuring differential privacy is to map the potentially infinite
dimensional RKHS H of k into a different, finite-dimensional RKHS Hϕ using random
features (Rahimi and Recht, 2007), privacy-protect the finite coordinate vector in
this space (Chaudhuri et al., 2011), and then employ a reduced set method to find
an expansion of the resulting RKHS element in terms of synthetic data points. In
contrast to Algorithm 2, both the weights and locations of synthetic data points can
be optimised here.

The algorithm is formalised as Algorithm 3. Lines 1-2 pick the number J = J(N) of
random features to use, and construct a random feature map ϕ with that many features.
Lines 3-4 compute the empirical KME of X in the RKHS Hϕ corresponding to the
kernel induced by the random features, and then privacy-protect the resulting finite,
real-valued vector using the Gaussian mechanism. Lines 5-6 run a blindly initialised
Reduced set method to find a weighted synthetic dataset whose KME in Hϕ is close
to the privacy-protected KME of the private database. Finally, line 7 releases this
weighted dataset to the public.

The following theorem confirms that Algorithm 3 outputs a consistent estimator
of the true KME µX , provided that the optimisation problem (4.7) is solved exactly,
and the random features converge to the kernel k uniformly on X . On compact sets X
this requirement is satisfied by general schemes such as random Fourier features and
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Fig. 4.2 RKHS distance (lower is better) to the (private) empirical KME µ̂X computed
using the same databases as in Figure 4.1, of dimensions D = 2 (left) and D = 5 (right),
but this time without a publishable subset. The synthetic data points for Algorithm 2 were
therefore sampled from a wide Gaussian distribution; please see Appendix C.2 for further
details. Algorithm 3 is capable of outperforming Algorithm 2 thanks to its ability to optimise
the synthetic data point locations, but this depends on the precise optimisation procedure
used and the optimisation problem becomes harder in higher dimensions.

random binning for shift-invariant kernels (Rahimi and Recht, 2007), schemes such
as the Mondrian kernel (Balog et al., 2016), or by random features for dot product
kernels (Kar and Karnick, 2012).

Theorem 11. If ϕ(·)Tϕ(·) → k(·, ·) converges uniformly in X × X as J → ∞, then
the output of Algorithm 3 is a consistent estimator of the true KME µX as N →∞.

Moreover, a uniform convergence rate for the random features, such as the one for
random Fourier features by Sriperumbudur and Szabo (2015), can be used to derive a
convergence rate for the output of Algorithm 3:

Proposition 13. If ϕ(·)Tϕ(·) → k(·, ·) converges uniformly in X × X at a rate
Op(J−1/2) as J →∞, then J = J(N) can be chosen so that the output of Algorithm 3
converges to the true KME µX at a rate Op(N−1/3).

The empirical KME of the private database µ̂X converges at a rate Op(N−1/2), so
we see that under perfect optimisation, the privacy cost incurred by Algorithm 3 is a
factor of N1/6. In practice performance will also depend on the Reduced set method
used, and the computational budget allocated to it. Figure 4.2 shows how the incurred
error (in terms of RKHS distance) varies with the number of synthetic data points M .
The additional ability of Algorithm 3 to optimise the locations of the synthetic data
points (rather than just the weights, as in Algorithm 2) seems to be more helpful in
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the higher-dimensional case D = 5, where the randomly sampled synthetic data points
are less likely to land close to private data points.

However, the problem gets harder in higher dimensions, because of the combined
effect of 1) requiring more noise to achieve differential privacy, and 2) the optimization
landscape becoming more difficult.

Proposition 14. If ∥ϕ(x)∥2 ≤ 1 for all x ∈ X , then Algorithm 3 is (ε, δ)-differentially
private.

This L2-boundedness requirement on the random feature vectors ϕ(x) is reasonable
under the weak assumption k(x, x) ≤ 1 for all x ∈ X discussed in Section 4.4, as in
that case ∥ϕ(x)∥2

2 = ϕ(x)Tϕ(x) ≈ k(x, x) ≤ 1.

4.6 Related Work

Synthetic database release algorithms with a differential privacy guarantee have been
studied in the literature before. Machanavajjhala et al. (2008) analyzed such a procedure
for count data, ensuring privacy by sampling a distribution and then synthetic counts
from a Dirichlet-Multinomial posterior. Blum et al. (2008) studied the exponential
mechanism applied to synthetic database generation, which leads to a very general,
but unfortunately inefficient algorithm (see also Section 4.3.4). Wasserman and Zhou
(2010) provided a theoretical comparison of this algorithm to sampling synthetic
databases from deterministically smoothed, or randomly perturbed histograms. Unlike
our approach, these algorithms achieve differential privacy by sampling synthetic data
points from a specific distribution, where resorting to approximate sampling can break
the privacy guarantee. In our framework we propose to arrive at the synthetic database
using a reduced set method, where poor performance could affect statistical usefulness
of the synthetic database, but cannot break its differential privacy.

Zhou et al. (2009) and Kenthapadi et al. (2012) proposed randomised database
compression schemes that yield synthetic databases useful for particular types of
algorithms, while guaranteeing differential privacy. The former compresses the number
of data points using a random linear or affine transformation of the entire database,
and the result can be used by procedures that rely on the empirical covariance of
the original data. The latter compresses the number of data point dimensions while
approximately preserving distances between original, private data points.
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More recently, Beaulieu-Jones et al. (2019) proposed to train Generative Adver-
sarial Networks (GANs, Goodfellow et al., 2014) to generate differentially private
synthetic datasets by utilizing differentially-private SGD (Abadi et al., 2016) to train
the discriminator, the only part of the GAN that has access to the private data.

Differentially private learning in a RKHS has also been studied, with Chaudhuri
et al. (2011) and Rubinstein et al. (2012) having independently presented release
mechanisms for the result of an empirical risk minimisation procedure (such as a SVM).
Similarly to our Algorithm 3, they map data points into a finite-dimensional space
defined by random features and carry out the privacy-protecting perturbation there.
However, they do not require the final stage of invoking a Reduced set method to
construct a synthetic database, because the output (such as a trained SVM) is only
used for evaluation on test points, for which it suffices to additionally release the used
random feature map ϕ. After us, Raj et al. (2019) considered the particular task of
kernel two-sample testing under the constraint of differential privacy.

As our framework stipulates privacy-protecting an empirical KME, which is a
function X → R, the work on differential privacy for functional data is of relevance.
Hall et al. (2013) showed how an RKHS element can be made differentially private via
pointwise addition of a Gaussian process sample path, but as discussed in Section 4.3.2,
the resulting function is no longer an element of the RKHS. More recently, Aldà
and Rubinstein (2017) proposed a general Bernstein mechanism for ε-differentially
private function release. The released function can be evaluated pointwise arbitrarily
many times, but again, the geometry of the RKHS to which the unperturbed function
belonged cannot be easily exploited anymore.

4.7 Discussion and Future Work

We proposed a framework for constructing differentially private synthetic database
release algorithms, based on the idea of using KMEs in RKHS as intermediate database
representations that can be 1) perturbed to guarantee differential privacy, and 2) subse-
quently released for versatile applications (see Section 4.3.3). To justify our framework,
we presented two concrete algorithms and proved theoretical results guaranteeing their
consistency and differential privacy. We also studied their finite-sample convergence
rates, and provided empirical illustrations of their performance on simulated datasets.
We believe that exploring other instantiations of this framework, and comparing them
theoretically and empirically, can be a fruitful direction for future research.
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Code to reproduce experiments in this chapter is available at https://github.com/
matejbalog/RKHS-private-database.

Limitations The work presented in this chapter is primarily theoretical in nature,
focusing on finite-sample and asymptotic convergence rates of constructed statistical
estimators under the assumption that the reduced set optimization problem in Equa-
tion 4.7 can be solved (in the case of Algorithm 3). This highlights the two main
current limitations. First, while the optimization problem generated by our framework
does have the promised anytime property whereby computation time and accuracy can
be traded off while preserving differential privacy, the trade off can still be expensive.
In Algorithm 2 the optimization problem could in fact be solved analytically, but
in Algorithm 3 it is a highly non-convex problem that required a custom iterative
gradient-based optimization procedure inspired by Schölkopf and Smola (2002, Chapter
18) to make progress on. Second, an evaluation on real-world sensitive datasets is
required to assess whether the proposed concrete algorithms are already practically
applicable, or more algorithmic innovation within the framework is needed.

The flexibility of the proposed framework also poses a potential limitation as it
leaves multiple modelling and algorithmic choices to the practitioner. These include,
for example, the choice of kernel k, the choice of random features ϕ in Algorithm 3,
and in the case of applying Algorithm 2 without pre-existing public data points also
the choice of the base distribution q. In these cases, part of the privacy budget ε could
be allocated to choosing these hyper-parameters based on the private data.

Future directions Apart from addressing current limitations, further possible future
directions are listed below.

• Relaxations
The i.i.d. assumption on database rows can be relaxed. For example, if they are
identically distributed (as a random variable X), but not necessarily independent,
the framework remains valid as long as a consistent estimator of the KME µX

can be constructed from the database rows. A common situation where this
arises is, for example, duplication of database rows due to user error.

• Relationship to hardness results
As discussed in Section 1.5.3, the offline (non-interactive) setting of differential
privacy is more challenging because the final use case is not known at time of

https://github.com/matejbalog/RKHS-private-database
https://github.com/matejbalog/RKHS-private-database
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release and therefore the privatization step cannot be specialized to a particular
query. This intuition has been transformed into formal computational hardness
results (Kowalczyk et al., 2018) and it would be insightful to understand how
these relate to the framework proposed in this chapter. This would firstly require
unifying the language of queries in differential privacy with the notion of statistical
computation using estimators of kernel mean embeddings as they were discussed
in Section 4.3.3.

• Perturbations in infinite-dimensional RKHS
Our concrete Algorithms 2 and 3 both construct a finite-dimensional RKHS in
which the random perturbation ensuring differential privacy can be carried out
using the standard Laplace and Gaussian mechanisms (Dwork and Roth, 2014)
on finite-dimensional coordinate vectors. As discussed in Section 4.3.2, this is
motivated by the fact that while the Gaussian mechanism has been generalized
to (infinite-dimensional) RKHS by Hall et al. (2013), the algorithm requires
pointwise addition of a Gaussian process sample path that moves the result
outside of the original RKHS (more specifically, to its external boundary where
∥ · ∥H =∞).

Pursuing this approach by moving to a slightly larger RKHS that does contain
the Gaussian process sample path (Kanagawa et al., 2018) could lead to new
algorithms that eliminate the “projection” error component (see Section C.1 in
the Appendices). Alternatively, projecting the perturbed element back onto a
bounded subset of the original RKHS could be considered. Depending on the
choice of subset, this may or may not be equivalent to our Algorithm 2.

• Differentially private MMD-GAN
Among deep generative models, adversarial training of GANs (Goodfellow et al.,
2014) has been a highly successful approach for generating realistic data points,
and this has recently also been exploited for generating differentially private
synthetic databases (Beaulieu-Jones et al., 2019). Since kernel-based versions
of GANs employing discriminators relying on the MMD metric (Gretton et al.,
2012) in an RKHS have already been proposed and studied (Dziugaite et al.,
2015; Li et al., 2017, 2015), a natural combination to consider could be to study
differentially private versions of such MMD-GANs.





Chapter 5

Program Synthesis

Chapter abstract We develop a first line of attack for solving programming contest-
style problems from input-output examples using deep learning. The approach is to
cast program synthesis – a discrete search problem – as a supervised learning problem
that can be attacked with gradient-based continuous optimization. We train a neural
network to predict properties of the program that generated the outputs from the
inputs. We use the neural network’s predictions to augment search techniques from the
programming languages community, including enumerative search and an SMT-based
solver. Empirically, we show that our approach leads to an order of magnitude speedup
over the strong non-augmented baselines and a Recurrent Neural Network approach,
and that we are able to solve problems of difficulty comparable to the simplest problems
on programming competition websites.

5.1 Introduction

A dream of artificial intelligence is to build systems that can write computer programs.
There has been much interest in program-like neural network models (Graves et al., 2014,
2016; Grefenstette et al., 2015; Joulin and Mikolov, 2015; Kaiser and Sutskever, 2016;
Kurach et al., 2016; Neelakantan et al., 2016; Reed and De Freitas, 2016; Sukhbaatar
et al., 2015; Weston et al., 2015; Zaremba et al., 2016), but none of these can write
programs; that is, they do not generate human-readable source code. Only very
recently, Bošnjak et al. (2017); Bunel et al. (2016); Gaunt et al. (2016) explored
the use of gradient descent to induce source code from input-output examples via
differentiable interpreters, and Ling et al. (2016) explored the generation of source
code from unstructured text descriptions. However, Gaunt et al. (2016) showed that
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differentiable interpreter-based program induction is inferior to discrete search-based
techniques used by the programming languages community. We are then left with
the question of how to make progress on program induction using machine learning
techniques.

In this work, we propose two main ideas: (1) learn to induce programs; that is,
use a corpus of program induction problems to learn strategies that generalize across
problems, and (2) integrate neural network architectures with search-based techniques
rather than replace them.

In more detail, we can contrast our approach to existing work on differentiable
interpreters. In differentiable interpreters, the idea is to define a differentiable mapping
from source code and inputs to outputs. After observing inputs and outputs, gradient
descent can be used to search for a program that matches the input-output examples.
This approach leverages gradient-based optimization, which has proven powerful for
training neural networks, but each synthesis problem is still solved independently—
solving many synthesis problems does not help to solve the next problem.

We argue that machine learning can provide significant value towards solving
Inductive Program Synthesis (IPS) by re-casting the problem as a big data problem.
We show that training a neural network on a large number of generated IPS problems
to predict cues from the problem description can help a search-based technique. In
this work, we focus on predicting an order on the program space and show how to use
it to guide search-based techniques that are common in the programming languages
community. This approach has three desirable properties: first, we transform a difficult
discrete search problem into a supervised learning problem that can be approached
with gradient-based optimization; second, we soften the effect of failures of the neural
network by searching over program space rather than relying on a single prediction;
and third, the neural network’s predictions are used to guide existing program synthesis
systems, allowing us to use and improve on the best solvers from the programming
languages community. Empirically, we show orders-of-magnitude improvements over
optimized standard search techniques and a Recurrent Neural Network-based approach
to the problem.

In summary, we define and instantiate a framework for using deep learning for
program synthesis problems like ones appearing on programming competition websites.
The concrete contributions are:
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1. defining a programming language that is expressive enough to include real-world
programming problems while being high-level enough to be predictable from
input-output examples;

2. models for mapping sets of input-output examples to program properties; and

3. experiments that show an order of magnitude speedup over standard program
synthesis techniques, which makes this approach feasible for solving problems of
similar difficulty as the simplest problems that appear on programming competi-
tion websites.

5.2 Background

We begin by providing background on Inductive Program Synthesis, including a brief
overview of how it is typically formulated and solved in the programming languages
community.

The Inductive Program Synthesis (IPS) problem is the following: given input-output
examples, produce a program that has behavior consistent with the examples.

Building an IPS system requires solving two problems. First, the search problem: to
find consistent programs we need to search over a suitable set of possible programs.
We need to define the set (i.e., the program space) and search procedure. Second,
the ranking problem: if there are multiple programs consistent with the input-output
examples, which one do we return? Both of these problems are dependent on the
specifics of the problem formulation. Thus, the first important decision in formulating
an approach to program synthesis is the choice of a Domain Specific Language.

Domain Specific Languages (DSLs). DSLs are programming languages that are
suitable for a specialized domain but are more restrictive than full-featured programming
languages. For example, one might disallow loops or other control flow, and only allow
string data types and a small number of primitive operations like concatenation. Most
of program synthesis research focuses on synthesizing programs in DSLs, because
full-featured languages like C++ enlarge the search space and complicate synthesis.
Restricted DSLs can also enable more efficient special-purpose search algorithms. For
example, if a DSL only allows concatenations of substrings of an input string, a dynamic
programming algorithm can efficiently search over all possible programs (Polozov and
Gulwani, 2015). The choice of DSL also affects the difficulty of the ranking problem.
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For example, in a DSL without if statements, the same algorithm is applied to all
inputs, reducing the number of programs consistent with any set of input-output
examples, and thus the ranking problem becomes easier. Of course, the restrictiveness
of the chosen DSL also determines which problems the system can solve at all.

Search Techniques. There are many techniques for searching for programs con-
sistent with input-output examples. Perhaps the simplest approach is to define a
grammar and then enumerate all derivations of the grammar, checking each one for
consistency with the examples. This approach can be combined with pruning based on
types and other logical reasoning (Feser et al., 2015). While simple, these approaches
can be implemented efficiently, and they can be surprisingly effective.

In restricted domains such as the concatenation example discussed above, special-
purpose algorithms can be used. FlashMeta (Polozov and Gulwani, 2015) describes
a framework for DSLs which allow decomposition of the search problem, e.g., where
the production of an output string from an input string can be reduced to finding a
program for producing the first part of the output and concatenating it with a program
for producing the latter part of the output string.

Another class of systems is based on Satisfiability Modulo Theories (SMT) solving.
SMT combines SAT-style search with theories like arithmetic and inequalities, with
the benefit that theory-dependent subproblems can be handled by special-purpose
solvers. For example, a special-purpose solver can easily find integers x, y such that
x < y and y < −100 hold, whereas an enumeration strategy may need to consider
many values before satisfying the constraints. Many program synthesis engines based
on SMT solvers exist, e.g., Sketch (Solar-Lezama, 2008) and Brahma (Gulwani et al.,
2011). They convert the semantics of a DSL into a set of constraints between variables
representing the program and the input-output values, and then call an SMT solver
to find a satisfying setting of the program variables. This approach shines when
special-purpose reasoning can be leveraged, but complex DSLs can lead to very large
constraint problems where constructing and manipulating the constraints can be a lot
slower than an enumerative approach.

Finally, stochastic local search can be employed to search over program space, and
there is a long history of applying genetic algorithms to this problem. One of the most
successful recent examples is the STOKE super-optimization system (Schkufza et al.,
2016), which uses stochastic local search to find assembly programs that have the same
semantics as an input program but execute faster.
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Ranking. While we focus on the search problem in this chapter, we briefly mention
the ranking problem here. A popular choice for ranking is to choose the shortest
program consistent with input-output examples (Gulwani, 2016). A more sophisticated
approach is employed by FlashFill (Singh and Gulwani, 2015). It works in a manner
similar to max-margin structured prediction, where known ground truth programs are
given, and the learning task is to assign scores to programs such that the ground truth
programs score higher than other programs that satisfy the input-output specification.

5.3 Learning Inductive Program Synthesis (LIPS)

In this section we outline the general approach that we follow in this chapter, which we
call Learning Inductive Program Synthesis (LIPS). The details of our instantiation of
LIPS appear in Section 5.4. The components of LIPS are (1) a DSL specification, (2) a
data-generation procedure, (3) a machine learning model that maps from input-output
examples to program attributes, and (4) a search procedure that searches program
space in an order guided by the model from (3). The framework is related to the
formulation of Menon et al. (2013); the relationship and key differences are discussed
in Section 5.6.

(1) DSL and Attributes. The choice of DSL is important in LIPS, just as it
is in any program synthesis system. It should be expressive enough to capture the
problems that we wish to solve, but restricted as much as possible to limit the difficulty
of the search. In LIPS we additionally specify an attribute function A that maps
programs P of the DSL to finite attribute vectors a = A(P ). (Attribute vectors of
different programs need not have equal length.) Attributes serve as the link between
the machine learning and the search component of LIPS: the machine learning model
predicts a distribution q(a | E), where E is the set of input-output examples, and the
search procedure aims to search over programs P as ordered by q(A(P ) | E). Thus
an attribute is useful if it is both predictable from input-output examples, and if
conditioning on its value significantly reduces the effective size of the search space.

Possible attributes are the (perhaps position-dependent) presence or absence of high-
level functions (e.g., does the program contain or end in a call to Sort). Other possible
attributes include control flow templates (e.g., the number of loops and conditionals).
In the extreme case, one may set A to the identity function, in which case the attribute
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is equivalent to the program; however, in our experiments we find that performance is
improved by choosing a more abstract attribute function.

(2) Data Generation. Step 2 is to generate a dataset ((P (n),a(n), E (n)))N
n=1 of

programs P (n) in the chosen DSL, their attributes a(n), and accompanying input-
output examples E (n). Different approaches are possible, ranging from enumerating
valid programs in the DSL and pruning, to training a more sophisticated generative
model of programs in the DSL. The key in the LIPS formulation is to ensure that it is
feasible to generate a large dataset (ideally millions of programs).

(3) Machine Learning Model. The machine learning problem is to learn a
distribution of attributes given input-output examples, q(a | E). There is freedom to
explore a large space of models, so long as the input component can encode E , and
the output is a proper distribution over attributes (e.g., if attributes are a fixed-size
binary vector, then a neural network with independent sigmoid outputs is appropriate;
if attributes are variable size, then a recurrent neural network output could be used).
Attributes are observed at training time, so training can use a maximum likelihood
objective.

(4) Search. The aim of the search component is to interface with an existing solver,
using the predicted q(a | E) to guide the search. We describe specific approaches in
the next section.

5.4 DeepCoder

Here we describe DeepCoder, our instantiation of LIPS including a choice of DSL, a
data generation strategy, models for encoding input-output sets, and algorithms for
searching over program space.

5.4.1 Domain Specific Language and Attributes

We consider binary attributes indicating the presence or absence of high-level functions
in the target program. To make this effective, the chosen DSL needs to contain
constructs that are not so low-level that they all appear in the vast majority of
programs, but at the same time should be common enough so that predicting their
occurrence from input-output examples can be learned successfully.
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Following this observation, our DSL is loosely inspired by query languages such
as SQL or LINQ, where high-level functions are used in sequence to manipulate data.
A program in our DSL is a sequence of function calls, where the result of each call
initializes a fresh variable that is either a singleton integer or an integer array. Functions
can be applied to any of the inputs or previously computed (intermediate) variables.
The output of the program is the return value of the last function call, i.e., the last
variable. See Figure 5.1 for an example program of length T = 4 in our DSL.

a ← [int]
b ← Filter (<0) a
c ← Map (*4) b
d ← Sort c
e ← Reverse d

An input-output example:
Input:
[-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
Output:
[-12, -20, -32, -36, -68]

Fig. 5.1 An example program in our DSL that takes a single integer array as its input.

Overall, our DSL contains the first-order functions Head, Last, Take, Drop,
Access, Minimum, Maximum, Reverse, Sort, Sum, and the higher-order functions
Map, Filter, Count, ZipWith, Scanl1. Higher-order functions require suitable
lambda functions for their behavior to be fully specified: for Map our DSL provides
lambdas (+1), (-1), (*2), (/2), (*(-1)), (**2), (*3), (/3), (*4), (/4); for Filter
and Count there are predicates (>0), (<0), (%2==0), (%2==1) and for ZipWith and
Scanl1 the DSL provides lambdas (+), (-), (*), Min, Max. A description of the
semantics of all functions is provided in Appendix D.6.

Note that while the language only allows linear control flow, many of its functions do
perform branching and looping internally (e.g., Sort, Count, ...). Examples of more
sophisticated programs expressible in our DSL, which were inspired by the simplest
problems appearing on programming competition websites, are shown in Appendix D.1.

5.4.2 Data Generation

To generate a dataset, we enumerate programs in the DSL, heuristically pruning away
those with easily detectable issues such as a redundant variable whose value does not
affect the program output, or, more generally, existence of a shorter equivalent program
(equivalence can be overapproximated by identical behavior on randomly or carefully
chosen inputs). To generate valid inputs for a program, we enforce a constraint on the
output value bounding integers to some predetermined range, and then propagate these
constraints backward through the program to obtain a range of valid values for each
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input. If one of these ranges is empty, we discard the program. Otherwise, input-output
pairs can be generated by picking inputs from the pre-computed valid ranges and
executing the program to obtain the output values. The binary attribute vectors are
easily computed from the program source codes.

5.4.3 Machine Learning Model

Observe how the input-output data in Figure 5.1 is informative of the functions
appearing in the program: the values in the output are all negative, divisible by 4, they
are sorted in decreasing order, and they happen to be multiples of numbers appearing in
the input. Our aim is to learn to recognize such patterns in the input-output examples,
and to leverage them to predict the presence or absence of individual functions. We
employ neural networks to model and learn the mapping from input-output examples
to attributes. We can think of these networks as consisting of two parts:

1. an encoder : a differentiable mapping from a set of M input-output examples
generated by a single program to a latent real-valued vector, and

2. a decoder : a differentiable mapping from the latent vector representing a set of M
input-output examples to predictions of the ground truth program’s attributes.

For the encoder we use a simple feed-forward architecture. First, we represent the
input and output types (singleton or array) by a one-hot-encoding, and we pad the
inputs and outputs to a maximum length L with a special Null value. Second, each
integer in the inputs and in the output is mapped to a learned embedding vector of
size E = 20. (The range of integers is restricted to a finite range and each embedding
is parametrized individually.) Third, for each input-output example separately, we
concatenate the embeddings of the input types, the inputs, the output type, and the
output into a single (fixed-length) vector, and pass this vector through H = 3 hidden
layers containing K = 256 sigmoid units each. The third hidden layer thus provides an
encoding of each individual input-output example. Finally, for input-output examples
in a set generated from the same program, we pool these representations together by
simple arithmetic averaging. See Appendix D.3 for more details on this architecture.

The advantage of this encoder lies in its simplicity, and we found it reasonably easy
to train. A disadvantage is that it requires an upper bound L on the length of arrays
appearing in the input and output. We confirmed that the chosen encoder architecture
is sensible in that it performs empirically at least as well as an RNN encoder, a natural
baseline, which may however be more difficult to train.
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DeepCoder learns to predict presence or absence of individual functions of the
DSL. We shall see this can already be exploited by various search techniques to large
computational gains. We use a decoder that pre-multiplies the encoding of input-output
examples by a learned C ×K matrix, where C = 34 is the number of functions in our
DSL (higher-order functions and lambdas are predicted independently), and treats
the resulting C numbers as log-unnormalized probabilities (logits) of each function
appearing in the source code. Figure 5.2 shows the predictions a trained neural network
made from 5 input-output examples for the program shown in Figure 5.1.
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Fig. 5.2 Neural network predicts the probability of each function appearing in the source
code. All instructions appearing in the ground truth program, shown in Figure 5.1, are
correctly identified in this case.

5.4.4 Search

One of the central ideas of this work is to use a neural network to guide the search for
a program consistent with a set of input-output examples instead of directly predicting
the entire source code. This section briefly describes the search techniques and how
they integrate the predicted attributes.

Depth-first search (DFS). We use an optimized version of DFS to search over
programs with a given maximum length T (see Appendix D.4 for details). When
the search procedure extends a partial program by a new function, it has to try the
functions in the DSL in some order. At this point DFS can opt to consider the functions
as ordered by their predicted probabilities from the neural network.

“Sort and add” enumeration. A stronger way of utilizing the predicted probabil-
ities of functions in an enumerative search procedure is to use a Sort and add scheme,
which maintains a set of active functions and performs DFS with the active function
set only. Whenever the search fails, the next most probable function (or several) are
added to the active set and the search restarts with this larger active set. Note that
this scheme has the deficiency of potentially re-exploring some parts of the search space
several times, which could be avoided by a more sophisticated search procedure.
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Sketch. Sketch (Solar-Lezama, 2008) is a successful SMT-based program synthesis
tool from the programming languages research community. While its main use case is
to synthesize programs by filling in “holes” in incomplete source code so as to match
specified requirements, it is flexible enough for our use case as well. The function in
each step and its arguments can be treated as the “holes”, and the requirement to be
satisfied is consistency with the provided set of input-output examples. Sketch can
utilize the neural network predictions in a Sort and add scheme as described above, as
the possibilities for each function hole can be restricted to the current active set.

λ2. λ2 (Feser et al., 2015) is a program synthesis tool from the programming
languages community that combines enumerative search with deduction to prune the
search space. It is designed to infer small functional programs for data structure
manipulation from input-output examples, by combining functions from a provided
library. λ2 can be used in our framework using a Sort and add scheme as described
above by choosing the library of functions according to the neural network predictions.

5.4.5 Training Loss Function

We use the negative cross entropy loss to train the neural network described in
Section 5.4.3, so that its predictions about each function can be interpreted as marginal
probabilities. The LIPS framework dictates learning q(a | E), the joint distribution
of all attributes a given the input-output examples, and it is not clear a priori how
much DeepCoder loses by ignoring correlations between functions. However, under the
simplifying assumption that the runtime of searching for a program of length T with
C functions made available to a search routine is proportional to CT , the following
result for Sort and add procedures shows that their runtime can be optimized using
only the marginal probabilities.

Lemma 2. For any fixed program length T , the expected total runtime of a Sort and
add search scheme can be upper bounded by a quantity that is minimized by adding the
functions in the order of decreasing true marginal probabilities.

Proof. Predicting source code functions from input-output examples can be seen as a
multi-label classification problem, where each set of input-output examples is associated
with a set of relevant labels (functions appearing in the ground truth source code).
Dembczynski et al. (2010) showed that in multi-label classification under a so-called
Rank loss (number of pairs of labels that need to be swapped before positive labels are
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all ranked higher than negative labels), it is Bayes optimal to rank the labels according
to their marginal probabilities. If the runtime of search with C functions is proportional
to CT , the total runtime of a Sort and add procedure can be monotonically transformed
so that it is upper bounded by this Rank loss. See Appendix D.5 for more details.

5.5 Experiments

In this section we report results from two categories of experiments. Our main
experiments (Section 5.5.1) show that the LIPS framework can lead to significant
performance gains in solving IPS by demonstrating such gains with DeepCoder. In
Section 5.5.2 we illustrate the robustness of the method by demonstrating a strong
kind of generalization ability across programs of different lengths.

5.5.1 DeepCoder Compared to Baselines

We trained a neural network as described in Section 5.4.3 to predict used functions from
input-output examples and constructed a test set of P = 500 programs, guaranteed to
be semantically disjoint from all programs on which the neural network was trained
(similarly to the equivalence check described in Section 5.4.2, we have ensured that all
test programs behave differently from all programs used during training on at least one
input). For each test program we generated M = 5 input-output examples involving
integers of magnitudes up to 256, passed the examples to the trained neural network,
and fed the obtained predictions to the search procedures from Section 5.4.4. We
also considered a RNN-based decoder generating programs token-by-token using beam
search (see Section 5.5.3 for details). To evaluate DeepCoder, we then recorded the time
the search procedures needed to find a program consistent with the M input-output
examples. As a baseline, we also ran all search procedures using a simple prior as
function probabilities, computed from their global incidence in the program corpus.

Table 5.1 Search speedups on programs of length T = 3 due to using neural network
predictions.

Timeout needed DFS Sort and add λ2 Sketch Beam

to solve 20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 20%
Baseline 41ms 126ms 314ms 80ms 335ms 861ms 18.9s 49.6s 84.2s >103s >103s >103s
DeepCoder 2.7ms 33ms 110ms 1.3ms 6.1ms 27ms 0.23s 0.52s 13.5s 2.13s 455s 292s
Speedup 15.2× 3.9× 2.9× 62.2× 54.6× 31.5× 80.4× 94.6× 6.2× >467× >2.2× >3.4×
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In the first, smaller-scale experiment (program search space size ∼ 2 × 106) we
trained the neural network on programs of length T = 3, and the test programs were
of the same length. Table 5.1 shows the per-task timeout required such that a solution
could be found for given proportions of the test tasks (in time less than or equal to
the timeout). For example, in a hypothetical test set with 4 tasks and runtimes of
3s, 2s, 1s, 4s, the timeout required to solve 50% of tasks would be 2s. More detailed
experimental results are discussed in Appendix D.2.

In the main experiment, we tackled a large-scale problem of searching for programs
consistent with input-output examples generated from programs of length T = 5 (search
space size on the order of 1010), supported by a neural network trained with programs
of shorter length T = 4. Here, we only consider P = 100 programs for reasons of
computational efficiency, after having verified that this does not significantly affect the
results in Table 5.1. The table in Figure 5.3a shows significant speedups for DFS, Sort
and add enumeration, and λ2 with Sort and add enumeration, the search techniques
capable of solving the search problem in reasonable time frames. Note that Sort and
add enumeration without the neural network (using prior probabilities of functions)
exceeded the 104 second timeout in two cases, so the relative speedups shown are crude
lower bounds.

Timeout needed DFS Sort and add λ2

to solve 20% 40% 60% 20% 40% 60% 20%
Baseline 163s 2887s 6832s 8181s >104s >104s 463s
DeepCoder 24s 514s 2654s 9s 264s 4640s 48s
Speedup 6.8× 5.6× 2.6× 907× >37× >2× 9.6×
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Fig. 5.3 (a) Search speedups on test programs of length T = 5. (b) Influence of length of
training programs on the speedup.

We hypothesize that the substantially larger performance gains on Sort and add
schemes as compared to gains on DFS can be explained by the fact that the choice
of attribute function (predicting presence of functions anywhere in the program) and
learning objective of the neural network are better matched to the Sort and add schemes.
Indeed, a more appropriate attribute function for DFS would be one that is more
informative of the functions appearing early in the program, since exploring an incorrect
first function is costly with DFS. On the other hand, the discussion in Section 5.4.5
provides theoretical indication that ignoring the correlations between functions is not
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cataclysmic for Sort and add enumeration, since a Rank loss that upper bounds the
Sort and add runtime can still be minimized.

In Appendix D.7 we analyse the performance of the neural networks used in these
experiments, by investigating which attributes (program instructions) tend to be
difficult to distinguish from each other.

5.5.2 Generalization Across Program Lengths

To investigate the neural network’s generalization ability across programs of different
lengths, we trained a network to predict used functions from input-output examples
that were generated from programs of length Ttrain ∈ {1, . . . , 4}. We then used each of
these networks to predict functions on 5 test sets containing input-output examples
generated from programs of lengths Ttest ∈ {1, . . . , 5}, respectively. The test programs
of a given length T were semantically disjoint from all training programs of the same
length T and also from all training and test programs of shorter lengths T ′ < T .

For each of the combinations of Ttrain and Ttest, Sort and add enumerative search
was run both with and without using the neural network’s predictions (in the latter
case using prior probabilities) until it solved 20% of the test set tasks. Figure 5.3b
shows the relative speedup of the solver having access to predictions from the trained
neural networks. These results indicate that the neural networks are able to generalize
beyond programs of the same length that they were trained on. This is partly due to
the search procedure on top of their predictions, which has the opportunity to correct
for the presence of functions that the neural network failed to predict. Note that a
sequence-to-sequence model trained on programs of a fixed length would not ordinarily
be expected to exhibit this kind of generalization ability.

5.5.3 Alternative Models

Encoder We evaluated replacing the feed-forward architecture encoder (Section 5.4.3)
with an RNN, a natural baseline. Using a GRU-based RNN we were able to achieve
results almost as good as using the feed-forward architecture, but found the RNN
encoder more difficult to train.

Decoder We also considered a purely neural network-based approach, where an
RNN decoder is trained to predict the entire program token-by-token. We combined
this with our feed-forward encoder by initializing the RNN using the pooled final layer
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of the encoder. We found it substantially more difficult to train an RNN decoder as
compared to the independent binary classifiers employed above. Beam search was
used to explore likely programs predicted by the RNN, but it only lead to a solution
comparable with the other techniques when searching for programs of lengths T ≤ 2,
where the search space size is very small (on the order of 103). Note that using an
RNN for both the encoder and decoder corresponds to a standard sequence-to-sequence
model. However, we do do not rule out that a more sophisticated RNN decoder or
training procedure could be possibly more successful.

5.6 Related Prior Work

Machine Learning for Inductive Program Synthesis. There is relatively little
prior work on using machine learning for programming by example. The most closely
related work is that of Menon et al. (2013), in which a hand-coded set of features of
input-output examples are used as “clues.” When a clue appears in the input-output
examples (e.g., the output is a permutation of the input), it reweights the probabilities
of productions in a probabilistic context free grammar by a learned amount. This
work shares the idea of learning to guide the search over program space conditional
on input-output examples. One difference is in the domains. Menon et al. (2013)
operate on short string manipulation programs, where it is arguably easier to hand-code
features to recognize patterns in the input-output examples (e.g., if the outputs are
always permutations or substrings of the input). Our work shows that there are
strong cues in patterns in input-output examples in the domain of numbers and lists.
However, the main difference is the scale. Menon et al. (2013) learns from a small (280
examples), manually-constructed dataset, which limits the capacity of the machine
learning model that can be trained. Thus, it forces the machine learning component to
be relatively simple. Indeed, Menon et al. (2013) use a log-linear model and rely on
hand-constructed features. LIPS automatically generates training data, which yields
datasets with millions of programs and enables high-capacity deep learning models to
be brought to bear on the problem.

Learning Representations of Program State. Piech et al. (2015) propose to
learn joint embeddings of program states and programs to automatically extend teacher
feedback to many similar programs in the MOOC setting. This work is similar in that
it considers embedding program states, but the domain is different, and it otherwise
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specifically focuses on syntactic differences between semantically equivalent programs
to provide stylistic feedback. Li et al. (2016) use graph neural networks (GNNs) to
predict logical descriptions from program states, focusing on data structure shapes
instead of numerical and list data. Such GNNs may be a suitable architecture to encode
states appearing when extending our DSL to handle more complex data structures.

Learning to Infer. Alemi et al. (2016) used neural sequence models in tandem with
an automated theorem prover: similar to our Sort and Add strategy, a neural network
component is trained to select premises that the theorem prover can use to prove a
theorem. A follow-up extension (Loos et al., 2017) is similar to our DFS enumeration
strategy and uses a neural network to guide the proof search at intermediate steps. By
reducing the search space like this, more theorems can be proven in the given time
limits. The main differences from DeepCoder are in the domains, and that they train
on an existing corpus of theorems. More broadly, if we view a DSL as defining a model
and search as a form of inference algorithm, then there is a large body of work on
using discriminatively-trained models to aid inference in generative models. Examples
include (Dayan et al., 1995; Heess et al., 2013; Jampani et al., 2015; Kingma and
Welling, 2014; Le et al., 2017; Shotton et al., 2013; Stuhlmüller et al., 2013).

5.7 Discussion

We have presented a framework for improving program synthesis systems by using
neural networks to translate cues in input-output examples to guidance over where
to search in program space. Our empirical results show that for many programs, this
technique improves the runtime of a wide range of synthesis baselines by 1-3 orders of
magnitude. We have found several problems in real online programming competitions
that can be solved with a program in our language, which validates the relevance of the
class of problems that we have studied in this work. In sum, this suggests that we have
made good progress towards being able to solve programming competition problems,
and the machine learning component plays an important role in making it tractable.

Limitations There remain some immediate limitations, however. First, the programs
we can synthesize are only the simplest problems on programming competition websites
and are simpler than most competition problems. Many problems require more complex
algorithmic solutions like dynamic programming and search, which are currently beyond
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our reach. Our chosen DSL currently cannot express solutions to many problems. To
do so, it would need to be extended by adding more primitives and allow for more
flexibility in program constructs (such as allowing loops). Second, we currently use five
input-output examples with relatively large integer values (up to 256 in magnitude),
which are probably more informative than typical (smaller) examples. While we remain
optimistic about the applicability of our approach as the DSL becomes more complex
and the input-output examples become less informative, it remains to be seen what the
magnitude of these effects are as we move towards solving large subsets of programming
competition problems.

5.7.1 Future Directions

Apart from the more immediate limitations of applying DeepCoder to automatically
solving programming competition style problems listed above, there are multiple
conceptual differences between the presented systems and, say, a human attempting to
solve such a task by themselves. Each of these conceptual points forms an interesting
direction of future research. In fact, some have already been undertaken since first
publication of DeepCoder (Balog et al., 2017a), and some of that work is also highlighted
below.

• Crude global properties
This is a non-fundamental limitation of DeepCoder, where for reasons of simplicity
only the presence or absence of each DSL primitive anywhere in the program
was predicted. This is clearly sub-optimal as this approach (1) quickly fails for
longer programs, and (2) does not account for the fact that there could exist
alternative solutions to the same problem that use very different instruction
sets. RobustFill (Devlin et al., 2017) addressed this by training a neural network
directly outputting programs token-by-token, an approach that we did not get
to work that well in the DeepCoder domain. PCCoder (Zohar and Wolf, 2018)
and Ellis et al. (2019) addressed this by setting up the problem in a way that
only the first line of the program needs to be predicted at any time. Somewhere
in between lies SketchAdapt (Nye et al., 2019), where a neural network is trained
to output a program sketch that can contain holes in arbitrary places, as decided
by the network.

• Problem decomposition (hierarchical reasoning)
DeepCoder does not have a notion of coming up with a general strategy for
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approaching a given problem, and only then filling in the details. Given a set
of input-output examples DeepCoder makes one set of predictions about which
instructions should be used. It does not have the opportunity to make a refined
set of predictions after some options have been tried, or parts of the code have
been filled in. What can be viewed as a step towards addressing this limitation,
SketchAdapt (Nye et al., 2019) employed a two stage procedure where first a
program sketch is predicted by a neural network, but holes can be left in places
where the network is not confident enough. In the second stage, a DeepCoder-
like system is utilized to make predictions useful for filling in the remaining
holes. However, the first stage is not quite a problem decomposition, because
the generated sketch does not come with a specification what each hole should
(roughly) do.

Another avenue towards addressing this problem could go via execution traces,
which could be predicted for each given input-output example, then aligned and
thus decomposition points could be identified, with each component then solved
recursively.

• Ability to execute
Although the Sketch search algorithm did know about the semantics of individual
DSL operations and could use them in its search to find a program matching
the given input-output examples, the search algorithm that worked best for
us (DFS) does not have the ability to execute – programs are only executed
“outside the search” after all lines of the program have been filled in and it is
to be checked whether the prediction matches the given input-output examples
(or whether the search needs to backtrack). PCCoder (Zohar and Wolf, 2018)
and (Ellis et al., 2019) directly addressed this conceptual limitation by training
the network to predict one line of code at a time, and then executing it on the
current program state. The resulting program state is then fed as input to the
network for predicting the following line. This is iterated until the program state
obtained after executing the most recently generated line matches the desired
output.

• Explicit language model
Experienced human programmers have a notion of how sensible computer pro-
grams for a given task should look like. As a trivial example, defining unused
variables or performing irrelevant actions are clear indications that the program



106 Program Synthesis

is at the very least written in an unexpected way, but more likely that there is a
bug in the source code. While a neural network making program predictions can
implicitly learn language models of source code, SketchAdapt (Nye et al., 2019)
found it helpful to add an LSTM language model of source code on top of the
sketch generator, in order to reweight the sequences output by that component.

• Realism of training data
Even if the neural network predicting source code is capable of learning a good
language model of source code, it will only do so if it is trained on realistic
data. DeepCoder and most of follow-up work have primarily used synthetic
data for training, where training programs are sampled uniformly at random
from a specific DSL. Moreover, input-output examples are also generated by
uniform random sampling, at best with added heuristics or rejection sampling
to ensure that programs do not crash on their generated inputs. Shin et al.
(2019b) highlighted issues arising from the mismatch between synthetic training
distributions and real-world distributions of programs and inputs, and together
with Clymo et al. (2019) proposed first solution steps based on the idea of
encouraging diversity in the generated synthetic data.

• Growing set of reusable building blocks
In DeepCoder and most other approaches the DSL is fixed upfront, and the net-
work can only implicitly recognize that some sequence of operations is frequently
useful as a unit; and even if it does, the network cannot predict such a unit in
a single step. Shin et al. (2019a) identified this limitation and addressed it by
mining common code idioms from a given corpus of code and showed that it can
aid program synthesis in a semantic parsing setup.

• Interaction between pattern matching and symbolic reasoning
DeepCoder performs a single step of pattern matching on a fixed level of granular-
ity (presence or absence of DSL primitives), and then offloads the predictions to
symbolic reasoning (a search algorithm). SketchAdapt (Nye et al., 2019) improves
upon this by automatically choosing the level at which pattern matching stops
and symbolic reasoning takes over by allowing the initial sketch generator to leave
arbitrarily large holes. Switching back and forth between symbolic reasoning
and pattern matching is still not explicitly supported, although execution-guided
program synthesis (Chen et al., 2019; Zohar and Wolf, 2018) and mining code



5.7 Discussion 107

idioms at different levels of granularity (Shin et al., 2019b) can be seen as steps
in that direction.

• Early feedback
A human programmer can sometimes realize during the process of writing source
code that the chosen approach is unlikely to work. This realization might come
from syntax (the code looks unnatural), or from semantics (partial execution
of parts of the code). In such a situation the programmer would backtrack,
but DeepCoder does not have a similar mechanism, at least not explicitly (the
Sketch synthetizer may prune some parts of the search space due to semantic
constraints). Ellis et al. (2019) introduced a learned value function into the
synthesis search loop, so that unpromising directions can be weighted down early
on. While any program generating (policy) network could in principle learn to
only generate promising directions, training an explicit value network has been
shown to be helpful.

• Generating new test cases
For a human programmer it can be very instructive to see the behaviour (ex-
ecution) of a (partial or complete) program on new test cases, perhaps ones
covering corner cases or ones that are even simpler than in the originally provided
input-output examples. Laich et al. (2020) proposed a system that generates
new inputs for the program being synthesized, with a trained neural network
oracle predicting whether a potential output is desirable or not. However, the
focus of this work is on the ranking problem (deciding which consistent program
is the one desired by the user) rather than on the search problem.

• Utilizing side information
Faced with the problem of finding a program that solves a particular task,
it is clearly beneficial to take into account as much information about the
task as possible. DeepCoder has focused on utilizing an input-output example
specification, but bringing in other side information such as the context of the task
(perhaps the type of programming contest) and in particular a natural language
problem statement should help. For a DeepCoder-style approach to apply, the
challenge is to obtain sufficient amounts of training data that would include
task descriptions in natural language. Such datasets have been created for and
evaluated using bash (Lin et al., 2017), SQL (Zhong et al., 2017) and a DSL that
can solve a particular type of computer science homework assignments (Polosukhin
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and Skidanov, 2018). The latter has been used to evaluate the SketchAdapt (Nye
et al., 2019) method that had already been mentioned above.



Chapter 6

Conclusion

The central philosophical idea of this thesis is that most computational problems arising
in machine learning are on a mathematical level instances of one of the following four
abstract tasks: integration, sampling, optimization, and search. While exceptions exist
(as discussed in Section 1.2.5), Sections 1.2.1-1.2.4 corroborated this idea by providing
an overview of a wide range of machine learning problems in each of the four categories.
Section 1.3 then introduced the concept of conversions, which are efficient computations
that transform a problem of one abstract type into a problem of another abstract type,
such that solving the latter problem yields or helps finding a solution to the original
problem. Multiple reasons for why a conversion can be preferable to solving the original
problem were also discussed in Section 1.3. Section 1.4 provided an overview of existing
machine learning algorithms that can be seen as performing such conversions, with
a special focus on conversions to optimization problems (Section 1.4.1) as the novel
methods presented in this thesis also convert to optimization problems.

The main contributions of this thesis were four new algorithms, or generalizations
of existing algorithms, that perform a conversion from a non-optimization problem
type to an optimization problem.

Chapter 2 generalized the Gumbel trick, a method for converting the integration
problem of partition function estimation into the optimization problem of finding a
most likely configuration. The generalization led to an entire family of tricks, of which
the Gumbel trick is just one member. Other members of the family were shown to be
statistically more efficient in various application domains of the Gumbel trick, including
low-rank perturbation approximations used in discrete graphical models. Using one of
the newly derived methods one can construct a statistical estimator of the partition
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function that achieves the same mean squared error while using (up to 40%) fewer
samples, where obtaining each sample entails solving an MAP optimization problem.

Chapter 3 generalized the Gumbel trick in an orthogonal direction, showing how
a different integration problem of estimating Rényi entropies can also be converted
into the optimization problem of finding a most likely configuration. The proposed
algorithm yields unbiased estimators of the Rényi entropies, and thanks to its simplicity
applies whenever the original Gumbel trick does. Chapters 2 and 3 were both instances
of conversions where the conversion is beneficial because it maps onto a well studied
problem of finding a maximum probability configuration in a discrete graphical model.

Chapter 4 proposed a conversion from the sampling problem dictated by a differential
privacy requirement when wishing to release a sensitive database to the public, to an
optimization problem in a Reproducing Kernel Hilbert Space. In the context of this
thesis, the main benefit of this conversion is that it allows traversing the computation-
accuracy-privacy trade-off manifold in a qualitatively different way. Approximating
the sampling problem without conversion to optimization would usually trade off all
three resources (computation, accuracy, privacy) at the same time, with the privacy
loss incurred being hard to quantify. The proposed method allows trading off accuracy
with computation while always respecting a fixed privacy budget. Moreover, the
mathematical theory of Reproducing Kernel Hilbert Spaces allowed proving consistency
results and finite-sample convergence bounds for the estimators that are released to
the public.

Chapter 5 showed how the discrete search problem of finding a program source
code consistent with a given input-output specification can be approached by solving
a continuous optimization problem. By casting program synthesis as a supervised
learning problem the original difficult search problem could be attacked using effective
gradient-based methods for training deep neural networks. The trained neural network
could potentially be used to directly solve discrete search problem instances (we
considered such an end-to-end RNN baseline in Section 5.5.3), thus providing a direct
conversion from discrete search to continuous optimization. Interestingly however,
it was beneficial to combine the strengths of the methods developed for the original
problem (synthesizers from the programming languages community) with the pattern-
matching abilities of the neural networks applied to the problem after conversion.
This highlights that conversions between different abstract problem types can also
be exploited to synergize strengths of methods developed by different (sub)fields of
computer science.



111

Future work Each of the four main contributions in this thesis has opened up
multiple avenues for future work, which have been described in detail in the respective
Sections 2.6, 3.5, 4.7, and 5.7. Here we describe directions related to the overarching
topic of the thesis, converting between different abstract problem types.

Different generalizations of the Gumbel trick presented in Chapters 2 and 3 can
be more efficient in different settings, and a better analytical understanding of which
conversion can be expected to work best for a given problem instance would be
desirable. Looking forward, the conversion to optimization problems using the developed
techniques could be also feasible for other integration problems beyond partition
function estimation and Rényi entropy estimation (see Section 3.5).

As shown by Chapter 4, performing a conversion can unlock new trade-offs between
different resource types. It will be interesting to investigate whether conversions can
be also useful in other domains where multiple kinds of resources (computation time,
memory, privacy, fairness, statistical efficiency, randomness,...) need to be balanced.

The empirical results of Chapter 5 demonstrated that conversions can be utilized
not only to replace one abstract problem type with another, but also to combine the
strengths of methods available for both the original and the new problem type. This is
a general observation that could be applicable in many problems where conversions
are available.

Finally, on a high level, this thesis has treated the concept of conversions informally.
A formalization of the concept would be desirable to gain a deeper understanding of
when conversions can be useful, and how they can trade off different resource types.

Final words With basic research it is often difficult to predict its impact ahead of
time. The work presented in this thesis is hopefully well-positioned to be useful, as
the tasks considered are fairly general and address important issues arising in machine
learning:

• The task of estimating normalizing constants (partition function estimation)
and the task of estimating uncertainty in a distribution (entropy estimation)
considered in Chapters 2 and 3, respectively, are ubiquitous in (probabilistic)
machine learning. Since probabilistic reasoning is a fundamental concept when
interacting with the real world, these tasks are unlikely to go away, and they
may also show up in new settings where converting to optimization can again be
useful.
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• With the rise of statistical and machine learning techniques the issue of protecting
individual privacy has been attracting increasing amounts of attention not only
within the scientific community, but also in the general public, in the media, and
in politics. With a lack of clear guidelines there is substantial risk of both under-
regulation and over-regulation of the use of statistical techniques on valuable
data, such as patient health records. The theoretical work of Chapter 4 on safe
methods for releasing sensitive data so that useful statistical inferences can be
drawn from it without violating individual privacy is therefore a step towards
addressing one of the challenges of our time.

• Finally, the work on program synthesis from Chapter 5 has already been picked
up and expanded on by the research community aiming to build useful synthesis
systems. While these systems may well turn out to be practically useful for soft-
ware engineers or even non-experts already in the short term, it is also conceivable
that program synthesis techniques will form a crucial stepping stone towards
building robust autonomous agents in the quest towards artificial intelligence.

With these grandiose goals stated, it is important to emphasize that research in general
and the works presented in this thesis in particular usually proceed through small steps.
And many more such steps will be needed.
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Appendix A

Partition Function Estimation

Here we provide proofs for the results stated in Chapter 2, together with additional
supporting lemmas required for these proofs.

A.1 Comparison of Gumbel and Exponential Tricks

In Section 2.2.3 we analyzed the asymptotic efficiency of different estimators of Z by
measuring their asymptotic variance. (As all our estimators in the full-rank perturbation
setting are consistent, their bias is 0 in the limit of infinite data, and so this asymptotic
variance equals the asymptotic MSE.) In the non-asymptotic regime, where an estimator
Ẑ is constructed from a finite set of M samples, we can analyze both the variance
var(Ẑ) and the bias (E[Ẑ] − Z) of the estimator. While in most cases these cannot
be obtained analytically and there we can resort to an empirical evaluation, for the
estimators stemming from the Gumbel and Exponential tricks analytical treatment
turns out to be possible using standard methods.

A.1.1 Estimating Z

Gumbel trick The Gumbel trick yields an unbiased estimator for lnZ, and we can
turn it into a consistent estimator of Z by exponentiating it:

Ẑ := exp
(

1
M

M∑
m=1

Xm

)
where X1, . . . , XM

iid∼ Gumbel(−c+ lnZ).
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Recalling that the moment generating function of a Gumbel(µ) distribution is G(t) =
Γ(1− t)eµt, we can obtain by using independence of the samples:

E[Ẑ] =
M∏

m=1
E[eXm/M ] =

(
Γ(1− 1/M)e(ln Z−c)/M

)M
= Γ(1− 1/M)Me−cZ,

E[Ẑ2] =
M∏

m=1
E[e2Xm/M ] =

(
Γ(1− 2/M)e2(ln Z−c)/M

)M
= Γ(1− 2/M)Me−2cZ2.

Therefore the squared bias, variance and MSE of the estimator Ẑ are, respectively:

bias(Ẑ)2 = (E[Ẑ]− Z)2 = Z2
(
Γ(1− 1/M)Me−c − 1

)
,

var(Ẑ) = E[Ẑ2]− E[Ẑ]2 = Z2
(
Γ(1− 2/M)Me−2c − Γ(1− 1/M)2Me−2c

)
,

MSE(Ẑ) = bias(Ẑ)2 + var(Ẑ) = Z2
(
Γ(1− 2/M)Me−2c − 2Γ(1− 1/M)Me−c + 1

)
.

These formulas hold for M > 2 where the moment generating functions are defined.
For M = 1 the estimator has infinite bias (and infinite variance), and for M = 2 it has
infinite variance. Figure 2.1 (left) shows the functional dependence of MSE(Ẑ) on the
number of samples M ≥ 3, in units of Z2.

Exponential trick The Exponential trick yields an unbiased estimator of 1/Z, and
we can turn it into a consistent estimator of Z by inverting it:

Ẑ :=
(

1
M

M∑
m=1

Xm

)−1

where X1, . . . , XM
iid∼ Exp(Z).

As X1, . . . , XM are independent and exponentially distributed with identical rates Z,
their sum follows the Gamma distribution with shape M and rate Z. Therefore the
estimator Ẑ can be written as Ẑ = MY , where Y ∼ InvGamma(M,Z). Recalling the
mean and variance of the Inverse-Gamma distribution, we obtain:

bias(Ẑ)2 = (E[Ẑ]− Z)2 = Z2
(

M

M − 1 − 1
)

= Z2 1
M − 1 ,

var(Ẑ) = Z2M2 1
(M − 1)2(M − 2) ,

MSE(Ẑ) = bias(Ẑ)2 + var(Ẑ) = Z2 M − 2 +M2

(M − 1)2(M − 2) = Z2 M + 2
(M − 1)(M − 2) .
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Again these formulas hold for M > 2 where the relevant expectations are defined: for
M = 1 the estimator has infinite bias, and for M ∈ {1, 2} it has infinite variance.
Figure 2.1 (left) shows the functional dependence of MSE(Ẑ) on the number of samples
M ≥ 3, in units of Z2. By inspecting the curves we observe that the Gumbel trick
estimator requires roughly 45% more samples to yield the same MSE as the Exponential
trick estimator.

A.1.2 Estimating lnZ

A similar analysis can be performed for estimating lnZ rather than Z. In that case
the Gumbel trick estimator of lnZ is unbiased and has variance (and thus MSE) equal
to 1

M
π2

6 . On the other hand, the Exponential trick estimator is

̂lnZ = − ln
(

1
M

M∑
m=1

Xm

)
where X1, . . . , XM

iid∼ Exp(Z).

Again ∑M
m=1 Xm ∼ Gamma(M,Z) and by reference to properties of the Gamma

distribution,

bias( ̂lnZ)2 = (E[Ẑ]− Z)2 = (lnM − (ψ(M)− lnZ)− lnZ)2 = (lnM − ψ(M))2 ,

var( ̂lnZ) = ψ1(M),
MSE( ̂lnZ) = bias( ̂lnZ)2 + var( ̂lnZ) = (lnM − ψ(M))2 + ψ1(M),

where ψ(·) is the digamma function and ψ1(·) is the trigamma function. Note that the
estimator can be debiased by subtracting its bias (lnM − ψ(M)). Figure 2.1 (right)
compares the MSE of the Gumbel and Exponential trick estimators of lnZ. We observe
that the Gumbel trick estimator performs better only for M = 1, and even in that case
the Exponential trick estimator is better when debiased.

A.2 Sum-unary Perturbations

Recall that sum-unary perturbations refer to the setting where each variable’s unary
potentials are perturbed with Gumbel noise, and the perturbed potential of a configu-
ration sums the perturbations from all variables (see Definition 1 in the main text).
Using sum-unary perturbations we can derive a family U(α) of upper bounds on the
log partition function (Proposition 2) and construct sequential samplers for the Gibbs
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distribution (Algorithm 1). Here we provide proofs for the related results stated in
Sections 2.3.1 and 2.3.2.

Notation We will write powβ x for xβ, where x, β ∈ R, when we find this increases
clarity of our exposition.

Lemma 3 (Weibull and Fréchet tricks). For any finite set Y and any function h, we
have

pow
−α

∑
y∈Y

pow
−1/α

h(y) = EW

[
min

y

{
h(y) W (y)

Γ(1 + α)

}]

where {W (y)}y∈Y
iid∼Weibull(1, α−1) for α ∈ (0,∞), and

pow
−α

∑
y∈Y

pow
−1/α

h(y) = EF

[
max

y

{
h(y) F (y)

Γ(1 + α)

}]

where {F (y)}y∈Y
i.i.d.∼ Fréchet(1,−α−1) for α ∈ (−1, 0).

Proof. This follows from setting up competing exponential clocks with rates λy =
h(y)−1/α and then applying the function g(x) = xα as in Example 6 for the case of
the Weibull trick. The case of the Fréchet trick is similar, except that g is strictly
decreasing for α ∈ (−1, 0), hence the maximization in place of the minimization.

A.2.1 Upper Bounds on the Partition Function

Proposition 2. For any α ∈ (−1, 0) ∪ (0,∞), the upper bound lnZ ≤ U(α) holds
with

U(α) := n
ln Γ(1 + α)

α
+ nc− 1

α
lnEγ

[
e−αU

]
.

Proof. We show the result for α ∈ (0,∞) using the Weibull trick; the case of α ∈ (−1, 0)
can be proved similarly using the Fréchet trick. The idea is to prove by induction on n
that Z−α ≥ e−αU(α), so that the claimed result follows by applying the monotonically
decreasing function x 7→ − ln(x)/α.

The base case n = 1 is the Clamping Lemma 1 below with j = n = 1. Now assume
the claim for n− 1 ≥ 1 and for xn ∈ Xn define Un−1(α, x1) :=

(n− 1)ln Γ(1 + α)
α

+ (n− 1)c− 1
α

lnEγ

[
exp

(
−α max

x2,...,xn

{
ϕ(x) +

n∑
i=2

γi(xi)
})]

.
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With this definition, the Clamping Lemma with j = 1 states that

∑
x1

pow
−1/α

e−αUn−1(α,x1) ≤ pow
−1/α

e−αU(α),

so

Z−α ≥ pow
−α

∑
x1∈X1

pow
−1/α

e−αUn−1(α,x1) [inductive hypothesis]

≥ pow
−α

pow
−1/α

e−αU(α) [Clamping Lemma]

= e−αU(α),

as required to complete the inductive step.

Proposition 3. The limit of U(α) as α→ 0 exists and equals U(0) := E[U ], i.e. the
Gumbel trick upper bound.

Proof. Recall that U(α) = n ln Γ(1+α)
α

+ nc − 1
α

lnE
[
e−αU

]
. The first term tends to

nψ(1) = −cn as α → 0 by L’Hôpital’s rule, where ψ is the digamma function. The
second term is constant in α. In the last term, E

[
e−αU

]
is the moment generating

function of U evaluated at −α, and as such its derivative at α = 0 exists and equals
the negative of the mean of U . Hence by L’Hôpital’s rule,

− lim
α→0

1
α

lnE
[
e−αU

]
= − lim

α→0

−E[U ]
E [e−αU ] = E[U ] = U(0).

The claimed result then follows by the Algebra of Limits, as the contributions of the
first two terms cancel.

Proposition 4. The function U(α) is differentiable at α = 0 and the derivative
equals

d
dαU(α)

∣∣∣∣∣
α=0

= n
π2

12 −
var(U)

2 .

Proof. First we show that U(α) is differentiable on (−1, 0)∪ (0,∞), and that the limit
of the derivative as α→ 0 exists and equals nπ2/12− var(U)/2.

The first term of U(α) is n ln Γ(1+α)
α

, which is differentiable for α ∈ (−1, 0) ∪ (0,∞)
by the Quotient Rule, and its derivative equals

d
dαn

ln Γ(1 + α)
α

= n
ψ(1 + α)α− ln Γ(1 + α)

α2 ,
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where ψ is the digamma function (logarithmic derivative of the gamma function).
Applying L’Hôpital’s rule we note that

lim
α→0

d
dαn

ln Γ(1 + α)
α

= n lim
α→0

ψ(1 + α) + αψ(1)(1 + α)− ψ(1 + α)
2α

= n
ψ(1)(1)

2 = n
ζ(2)

2 = n
π2

12 ,

where ψ(1) is the trigamma function (derivative of the digamma function), whose value
at 1 is known to be ζ(2) = π2/6, the Riemann zeta function evaluated at 2.

The second term of U(α) is constant in α. The last term can be written as
K(−α)/(−α), where K is the cumulant generating function (logarithm of the moment
generating function) of the random variable U . The cumulant generating function is
differentiable, and by the Quotient rule

d
dα

K(−α)
−α

= −αK
′(−α)−K(−α)

α2 .

Applying L’Hôpital’s rule we note that

lim
α→0

d
dα

K(−α)
−α

= lim
α→0

K ′(−α) + αK ′′(−α)−K ′(−α)
2α = K ′′(0)

2 = var(U)
2 ,

where we have used that the second derivative of the cumulant generating function is
the variance.

As U(α) is continuous at 0 by construction, the above implies that it has left and
right derivatives at 0. As the values of these derivatives coincide, the function is
differentiable at 0 and the derivative has the stated value.

Recall that for a variable index j ∈ {1, . . . , n} we also defined partial sum-unary
perturbations

Uj(x1, . . . , xj−1) := max
xj ,...,xn

ϕ(x) +
n∑

i=j

γi(xi)
 ,

which fix the variables x1, . . . , xj−1 and perturb the remaining ones.
Lemma 1 (Clamping Lemma). For any j ∈ {1, . . . , n} and any fixed partial variable
assignment (x1, . . . , xj−1) ∈ X1 × · · · × Xj−1, the following inequality holds with any
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trick parameter α ∈ (−1, 0) ∪ (0,∞):

∑
xj∈Xj

Eγ

[
e−(n−j) ln Γ(1+α)−α(n−j)c)e−αUj+1(x1,...,xj)

]−1/α

≤ Eγ

[
e−(n−(j−1)) ln Γ(1+α)−α(n−(j−1))c)e−αUj(x1,...,xj−1)

]−1/α
.

Proof. For α > 0, from the Weibull trick (Lemma 3), using independence of the
perturbations and Jensen’s inequality,

pow
−α

∑
xj∈Xj

pow
−1/α

EW

 min
xj+1,...,xn

p̃(x)−α
n∏

i=j+1

W (xi)
Γ(1 + α)


= EW

min
xj∈Xj

EW

 min
xj+1,...,xn

p̃(x)−α
n∏

i=j+1

W (xi)
Γ(1 + α)

 W (xj)
Γ(1 + α)




≤ EW

 min
xj ,...,xn

p̃(x)−α
n∏

i=j

W (xi)
Γ(1 + α)

 .
Representing the Weibull random variables in terms of Gumbel random variables
using the transformation W = e−(γ+c)α, where γ ∼ Gumbel(−c), and manipulating the
obtained expressions yields the claimed result.

A.2.2 Sequential Samplers for the Gibbs Distribution

The family of sequential samplers for the Gibbs distribution presented in the main
text as Algorithm 1 has the same overall structure as the sequential sampler derived
by Hazan et al. (2013) from the Gumbel trick upper bound U(0), and hence correctness
can be argued similarly. Conditioned on accepting the sample, the probability that
x = (x1, . . . , xn) is returned is

n∏
i=1

pi(xi|x1, . . . , xi−1) =
n∏

i=1

e−c

Γ(1 + α)1/α

Eγ

[
e−αUi+1(x1,...,xi)

]−1/α

Eγ [e−αUi(x1,...,xi−1)]−1/α

= e−nc

Γ(1 + α)n/α

(
e−αϕ(x1,...,xn)

)−1/α

E[e−αU ]−1/α
∝ p(x),

as required to show that the produced samples follow the Gibbs distribution p. Note,
however, that in practice one introduces an approximation by replacing expectations
with sample averages.
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A.2.3 Relationship Between Errors of Sum-unary Gumbel
Perturbations

We write x∗ for the (random) MAP configuration after sum-unary perturbation of the
potential function, i.e.,

x∗ := argmax
x∈X

{
ϕ(x) +

n∑
i=1

γi(xi)
}
.

Let qsum(x) := P[x = x∗] be the probability mass function of x∗.
The following results links together the errors acquired when using summed unary

perturbations to upper bound the log partition function lnZ ≤ U(0) using the Gumbel
trick upper bound by Hazan and Jaakkola (2012), to approximately sample from
the Gibbs distribution by using qsum instead, and to upper bound the entropy of the
approximate distribution qsum using the bound due to Maji et al. (2014).
Proposition 6. Writing p for the Gibbs distribution, we have

(U(0)− lnZ)︸ ︷︷ ︸
error in ln Z bound

+ KL(qsum ∥ p)︸ ︷︷ ︸
sampling error

= Eγi
[γi(x∗

i )]−H(qsum)︸ ︷︷ ︸
error in entropy estimation

.

Proof. By conditioning on the maximizing configuration x∗, we can rewrite the Gumbel
trick upper bound U(0) as follows:

U(0) = Eγ

[
max
x∈X

{
θ(x) +

n∑
i=1

γi(xi)
}]

=
∑
x∈X

qsum(x)
(
θ(x) + Eγ

[
n∑

i=1
γi(xi) | x = x∗

])

=
∑
x∈X

qsum(x)θ(x) +
n∑

i=1
Eγi

[γi(x∗
i )] .

At the same time, the KL divergence between qsum and the Gibbs distribution p

generally expands as

KL(qsum ∥ p) = −H(qsum)−
∑
x∈X

qsum(x) ln exp (θ(x))∑
x̃∈X exp (θ(x̃))

= −H(qsum)−
∑
x∈X

qsum(x)θ(x) + lnZ.

Adding the two equations together and rearranging yields the claimed result.
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A.3 Averaged Unary Perturbations

A.3.1 Lower Bounds on the Partition Function

In the main text we stated the following two lower bounds on the log partition function
lnZ.
Proposition 5. Let α ∈ (−1, 0) ∪ (0,∞). For any subset S ⊆ {1, . . . , n} of the
variables x1, . . . , xn we have lnZ ≥

c+ ln Γ(1 + α)
α

− 1
α

lnE
[
e−α maxx{ϕ(x)+γS(xS)}

]
,

where xS := {xi : i ∈ S} and γS(xS) ∼ Gumbel(−c) independently for each setting of
xS.

Proof. Let S̄ := {1, . . . , n} \ S. First we handle the case α > 0. We have trivially that

pow−α Z = pow−α

∑
xS

∑
xS̄

eϕ(xS ,xS̄) ≤ pow−α

∑
xS

max
xS̄

eϕ(xS ,xS̄).

The Weibull trick tells us that pow−α

∑
y pow−1/α h(y) = EW [miny

h(y)
Γ(1+α)W (y)] where

{W (y)}y
iid∼ Weibull(1, α−1). Applying this to the summation over xS on the right-hand

side of the above inequality, we obtain

pow−α Z ≤ EW

[
min

xS

pow−α maxxS̄
eϕ(xS ,xS̄)

Γ(1 + α) W (xS)
]
.

Expressing the Weibull random variableW (xS) as e−α(γS(xS)+c) with γS(xS) ∼ Gumbel(−c),
the right-hand side can be simplified as follows:

pow−α Z ≤
1

Γ(1 + α)Eγ

[
pow−α max

xS
max

xS̄

eϕ(xS ,xS̄)eγS(xS)+c
]

= e−αc

Γ(1 + α)Eγ

[
exp

(
−αmax

x
{ϕ(x) + γS(xS)}

)]
.
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Taking the logarithm and dividing by −α < 0 yields the claimed result for positive α.
For α ∈ (−1, 0) we proceed similarly, obtaining that

pow−α Z ≥ pow−α

∑
xS

max
xS̄

eϕ(xS ,xS̄)

= EF

[
min

xS

pow−α maxxS̄
eϕ(xS ,xS̄)

Γ(1 + α) F (xS)
]
,

where F (x(S)) ∼ Fréchet(1,−α−1). Representing these random variables as e−α(γS(xS)+c)

with γS(xS) ∼ Gumbel(−c), simplifying as in the previous case and finally dividing
the inequality by −α > 0 yields the claimed result for α ∈ (−1, 0).

Corollary 8. For any α ∈ (−1, 0) ∪ (0,∞), we have the lower bound lnZ ≥ L(α),
where

L(α) := c+ ln Γ(1 + α)
α

− 1
nα

lnE [exp (−nαL)] ,

Proof. Applying Proposition 5 n times with all singleton sets S = {i} and averaging
the obtained lower bounds yields

lnZ ≥ c+ ln Γ(1 + α)
α

− 1
n

n∑
i=1

1
α

lnE
[
exp

(
−αmax

x
{ϕ(x) + γi(xi)}

)]

= c+ ln Γ(1 + α)
α

− 1
nα

lnE
[
exp

(
−

n∑
i=1

αmax
x
{ϕ(x) + γi(xi)}

)]

= c+ ln Γ(1 + α)
α

− 1
nα

lnE
[
exp

(
−nα 1

n

n∑
i=1

max
x
{ϕ(x) + γi(xi)}

)]
,

where the first equality used the fact that the perturbations γi(xi) are mutually
independent for different indices i to replace the product of expectations with the
expectation of the product. The claimed result follows by applying Jensen’s inequality
to swap the summation and the convex maxx function, noting that the inequality
works out the right way for both positive and negative α.

Jensen’s inequality can be used to relate the general lower bound L(α) to the
Gumbel trick lower bound L(0), showing that the former cannot be arbitrarily worse
than the latter:

Proposition 15. For all α ∈ (−1, 0), the lower bound L(α) on lnZ satisfies

L(α) ≥ L(0) + ln Γ(1 + α)
α

+ c.
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Proof. Apply Jensen’s inequality with the convex function x 7→ e−nα to the last term
in the definition of L(α), noting that the inequality works out the stated way for
α < 0.

Note that ln Γ(1+α)
α

+ c ≤ 0 for α ∈ (−1, 0) so this result does not imply that the
Fréchet lower bounds are tighter than the Gumbel lower bound L(0); it merely says
that they cannot be arbitrarily worse than L(0).

A.3.2 Relationship Between Errors of Averaged-unary Gum-
bel Perturbations

In this section we write x∗ for the (random) MAP configuration after average-unary
perturbation of the potential function, i.e.,

x∗ := argmax
x∈X

{
ϕ(x) + 1

n

n∑
i=1

γi(xi)
}
.

where {γi(xi) | xi ∈ Xi, 1 ≤ i ≤ n} iid∼ Gumbel(−c). Let qavg(x) := P[x = x∗] be the
probability mass function of x∗. The Gumbel trick lower bound on the log partition
function lnZ due to Hazan et al. (2013) is:

lnZ ≥ L(0) = Lϕ(0) := Eγ

[
min
x∈X

{
ϕ(x) + 1

n

n∑
i=1

γi(xi)
}]

. (A.1)

We show that the gap of this Gumbel trick lower bound on lnZ upper bounds the
KL divergence between the approximate distribution qavg and the Gibbs distribution p.
To this end, we first need an entropy bound for qavg analogous to Theorem 1 of (Maji
et al., 2014).

Theorem 12. The entropy of qavg can be lower bounded using expected values of
max-perturbations as follows:

H(qavg) ≥
1
n

n∑
i=1

Eγi
[γi(x∗

i )] .

Remark. Theorem 1 of (Maji et al., 2014) and this Theorem 12 differ in three aspects:
(1) the former is an upper bound and the latter is a lower bound, (2) the former sums
the expectations while the latter averages them, and (3) the distributions qsum and qavg

of x∗ in the two theorems are different.
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Proof. By the duality relation between negative entropy and the log partition func-
tion (Wainwright and Jordan, 2008), the entropy H(qavg) of the unary-avg perturb-max
distribution qavg can be expressed as

H(qavg) = inf
φ

{
lnZφ −

∑
x∈X

qavg(x)φ(x)
}
,

where the variable φ ranges over all potential functions on X , and Zφ = ∑
x∈X expφ(x).

Applying the Gumbel trick lower bound on the log partition function gives

H(qavg) ≥ inf
φ

{
Lφ(0)−

∑
x∈X

qavg(x)φ(x)
}
,

Proposition 16 in Appendix A.4 shows that Lφ(0) is a convex function of φ. The
expression −∑x∈X q(x)φ(x) is a linear function of φ, so also convex, and thus as a
sum of two convex functions, the quantity Lφ(0)−∑x∈X q(x)φ(x) within the infimum
is a convex function of φ. Moreover, Proposition 17 in Appendix A.4 tells us that the
partial derivatives can be computed as

∂

∂φ(x)

(
Lφ(0)−

∑
x∈X

qavg(x)φ(x)
)

= qφ(x)− qavg(x),

where qφ(x) is the unary-avg perturb-max distribution associated with the poten-
tial function φ. Proposition 18 in Appendix A.4 confirms that these partial deriva-
tives are continuous, so we observe that as a function of φ, the expression Lφ(0) −∑

x∈X qavg(x)φ(x) is a convex function with continuous partial derivatives, so it is a
differentiable convex function. This is sufficient to establish that the point φ = ϕ is a
global minimum of this function (Wright and Nocedal, 1999). Hence

H(qavg) ≥ inf
φ

{
Lφ(0)−

∑
x∈X

qavg(x)φ(x)
}

= Lϕ(0)−
∑
x∈X

qavg(x)ϕ(x)

=
∑
x∈X

qavg(x)Eγ

[
ϕ(x) + 1

n

n∑
i=1

γi(xi) | x = x∗
]
−
∑
x∈X

qavg(x)ϕ(x)

= 1
n

n∑
i=1

Eγi
[γi(x∗

i )] ,

where we conditioned on the maximizing configuration x∗ when expanding Lϕ(0).
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Remark. This proof proceeded in the same way as the proof of Maji et al. (2014) for the
upper bound, except that establishing the minimizing configuration of the infimum is
a non-trivial step that is actually required in this case. The second revision of (Hazan
et al., 2019) computes the derivative of Uφ(0)−∑x∈X qsum(x)φ(x), which is similar to
our Lφ(0)−∑x∈X qavg(x)φ(x), by differentiating under the expectation.

Equipped with Theorem 12, we can now show a link between the approximation
“errors” of the averaged-unary perturbation MAP configuration distribution qavg (to
the Gibbs distribution p) and estimate L(0) (to lnZ).
Proposition 7. Let p be the Gibbs distribution on X . Then

lnZ − L(0)︸ ︷︷ ︸
error in ln Z bound

≥ KL(qavg ∥ p)︸ ︷︷ ︸
sampling error

≥ 0.

Remark. While we knew from Hazan et al. (2013) that lnZ − L(0) ≥ 0 (i.e. that L(0)
is a lower bound on lnZ), this is a stronger result showing that the size of the gap is
an upper bound on the KL divergence between the average-unary perturbation MAP
distribution qavg and the Gibbs distribution p.

Proof. The Kullback-Leibler divergence in question expands as

KL(qavg ∥ p) = −H(qavg)−
∑
x∈X

qavg(x) ln expϕ(x)∑
x̃∈X expϕ(x̃)

= −H(qavg)−
∑
x∈X

qavg(x)ϕ(x) + lnZ.

From the proof of Theorem 12 we know that H(qavg) ≥ L(0)−∑x∈X qavg(x)ϕ(x), so

KL(qavg ∥ p) ≤ −L(0) +
∑
x∈X

qavg(x)ϕ(x)−
∑
x∈X

qavg(x)ϕ(x) + lnZ = lnZ − L(0).
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A.4 Technical Results

In this section we write L(ϕ) instead of Lϕ(0) for the Gumbel trick lower bound on
lnZ associated with the potential function ϕ, see equation (A.1).

Proposition 16. The Gumbel trick lower bound L(ϕ), viewed as a function of the
potentials ϕ, is convex.

Proof. Convexity can be proved directly from definition. Let ϕ1 and ϕ2 be two arbitrary
potential functions on a discrete product space X , and let λ ∈ [0, 1]. Then

L(λϕ1 + (1− λ)ϕ2)

= Eγ

[
max
x∈X

{
λϕ1(x) + (1− λ)ϕ2(x) + 1

n

n∑
i=1

γi(xi)
}]

= Eγ

[
max
x∈X

{
λ

(
ϕ1(x) + 1

n

n∑
i=1

γi(xi)
)

+ (1− λ)
(
ϕ2(x) + 1

n

n∑
i=1

γi(xi)
)}]

≤ Eγ

[
λmax

x∈X

{
ϕ1(x) + 1

n

n∑
i=1

γi(xi)
}

+ (1− λ) max
x∈X

{
ϕ2(x) + 1

n

n∑
i=1

γi(xi)
}]

= λL(ϕ1) + (1− λ)L(ϕ2),

where we have used convexity of the max function to obtain the inequality, and linearity
of expectation to arrive at the final equality.

Remark. This convexity proof goes through for other (low-dimensional) perturbations
as well, e.g. it also works for Uϕ(0).

Proposition 17. The Gumbel trick lower bound L(ϕ), viewed as a function of the
potentials ϕ, has partial derivatives

∂

∂ϕ(x̃)L(ϕ) = qϕ(x̃),

where qϕ is the probability mass function of the average-unary perturbation MAP
configuration’s distribution associated with the potential function ϕ.

Proof. Let x̃ ∈ X , so that ϕ(x̃) is a general component of ϕ, and let ex̃ be the indicator
vector of x̃. For any δ ∈ R, the change in the lower bound L due to replacing ϕ(x̃)
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with ϕ(x̃) + δ is L(ϕ+ δex̃)− L(ϕ) =

Eγ

[
max
x∈X

{
ϕ(x) + δ1{x = x̃}+ 1

n

n∑
i=1

γi(xi)
}]
− Eγ

[
max
x∈X

{
ϕ(x) + 1

n

n∑
i=1

γi(xi)
}]

= Eγ

[
max
x∈X

{
ϕ(x) + δ1{x = x̃}+ 1

n

n∑
i=1

γi(xi)
}
−max

x∈X

{
ϕ(x) + 1

n

n∑
i=1

γi(xi)
}]

= Eγ [∆(ϕ, δ, x̃, γ)] ,

by linearity of expectation, where we have denoted by ∆(ϕ, δ, x̃, γ) the change in
maximum due to replacing the potential ϕ(x̃) with ϕ(x̃) + δ. Let’s condition on the
argmax before modifying ϕ:

L(ϕ+ δex̃)− L(ϕ) = Eγ [∆(ϕ, δ, x̃, γ)]
=
∑
x∈X

qϕ(x)Eγ [∆(ϕ, δ, x̃, γ) | x is the original argmax] .

Now let’s condition on the size of the gap G between the maximum and the runner-up:

Eγ [∆(ϕ, δ, x̃, γ) | x is the original argmax]
= P(G ≤ |δ|)Eγ [∆(ϕ, δ, x̃, γ) | x is the original argmax, G ≤ |δ|]
+ P(G > |δ|)Eγ [∆(ϕ, δ, x̃, γ) | x is the original argmax, G > |δ|]

Let’s examine all four terms on the right-hand side one by one:

1. P(G ≤ |δ|)→ P(G = 0) = 0 as δ → 0 by monotonicity of measure.

2. Eγ [∆(ϕ, δ, x̃, γ) | x is the original argmax, G ≤ |δ|] ≤ δ since |∆(ϕ, δ, x̃, γ)| ≤ |δ|
always holds.

3. P(G > |δ|)→ P(G ≥ 0) = 1 as δ → 0 by monotonicity of measure.

4. Eγ [∆(ϕ, δ, x̃, γ) | x is the original argmax, G > |δ|] = δ1{x = x̃} since in this
case both maximizations in the definition of ∆(ϕ, δ, x̃, γ) are maximized at x.

Therefore, as δ → 0,

Eγ [∆(ϕ, δ, x̃, γ) | x is the original argmax] = o(1)o(δ) + (1 + o(1))δ1{x = x̃}
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Putting things together, we have

lim
δ→0

L(ϕ+ δex̃)− L(ϕ)
δ

=
∑
x∈X

qϕ(x) lim
δ→0

1
δ
Eγ [∆(ϕ, δ, x̃, γ) | x is the original argmax]

=
∑
x∈X

qϕ(x)1{x = x̃}

= qϕ(x̃),

which proves the stated claim directly from definition of a partial derivative.

Proposition 18. The probability mass function qϕ of the average-unary perturbation
MAP configuration’s distribution associated with a potential function ϕ is continuous
in ϕ.

Proof. For any x∗ ∈ X we have from definition

qϕ(x∗) = P
[
x∗ = argmax

x∈X

{
ϕ(x) + 1

n

n∑
i=1

γi(xi)
}]

= P
[
ϕ(x∗) + 1

n

n∑
i=1

γi(x∗
i ) > max

x∈X \{x∗}

{
ϕ(x) + 1

n

n∑
i=1

γi(xi)
}]

= E
[
1

{
ϕ(x∗) + 1

n

n∑
i=1

γi(x∗
i ) > max

x∈X \{x∗}

{
ϕ(x) + 1

n

n∑
i=1

γi(xi)
}}]

which is continuous in ϕ by continuity of max, of 1 {· > ·} (as a function of ϕ) and by
the Bounded Convergence Theorem.

Remark. The results above show that the Gumbel trick lower bound L(ϕ), viewed as a
function of the potentials ϕ, is convex and has continuous partial derivatives.



Appendix B

Rényi Entropy Estimation

Here we provide proofs and details that were omitted in the main text of Chapter 3.
Proposition 8. For A ⊆ X , let ĤA

α (p) be the estimator of Hα(p) that shares the
noise among configurations in A, and uses independent noise for the others:

ĤA
α (p) := α

1− α
1
M

M∑
m=1

[
max
x∈X

{
ϕ(x) + 1

α
γ

(m)
0 (x)

}
−max

x∈X

{
ϕ(x) + γ

(m)
1 (x)

}]
(B.1)

where γ(m)
0 (x) = γ

(m)
1 (x) for all x ∈ A, and otherwise all γ’s are i.i.d. Gumbel(−c).

Then
var

[
ĤX

α (p)
]
≤ var

[
Ĥ∅

α(p)
]

= 1
M

1 + α2

(1− α)2
π2

6 (B.2)

Proof. As perturbations across different samples m = 1, . . . ,M are independent, and
the variance of a sum of independent random variables is the sum of individual variances,
it suffices to consider the case M = 1 and focus on

var
(

max
x∈X

{
ϕ(x) + 1

α
γ0(x)

}
−max

x∈X
{ϕ(x) + γ1(x)}

)
= var

(
max
x∈X

{
ϕ(x) + 1

α
γ0(x)

})
+ var

(
max
x∈X
{ϕ(x) + γ1(x)}

)
− 2 Cov

(
max
x∈X

{
ϕ(x) + 1

α
γ0(x)

}
,max

x∈X
{ϕ(x) + γ1(x)}

)
= 1
α2
π2

6 + π2

6 − 2 Cov
(

max
x∈X

{
ϕ(x) + 1

α
γ0(x)

}
,max

x∈X
{ϕ(x) + γ1(x)}

)
, (B.3)

where the variances were evaluated by recognizing Gumbel distributions as distribu-
tions of max-perturbations. When A = ∅ and γ0, γ1 are mutually independent, the
covariance vanishes and var

[
Ĥ∅

α(p)
]

evaluates to the expression on the right-hand
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side of Equation 3.14 in the proposition statement, as required (upon adding back
the appropriate 1

M
scaling). Otherwise, the functions f, g : RX → R defined respec-

tively by f(z) := maxx∈X
{
ϕ(x) + 1

α
zx
}

and g(z) := maxx∈X {ϕ(x) + zx} are both
non-decreasing in all of their arguments zx ∈ R, so the product measure version of
Harris’ inequality (a special case of the FKG inequality) applies to conclude that the
covariance is non-negative. It follows that var

[
ĤX

α (p)
]
≤ var

[
Ĥ∅

α(p)
]
.

Proposition 19. Suppose the normalizer Z of the distribution p is known, and let
Ĥα(p) be the estimator of Hα(p) for normalized distributions based on Equation 3.8
(i.e. without a control variate). When p is a distribution uniformly distributed on its
support then ĤX

α (p) is a lower-variance estimator than Ĥα(p) if and only if α < 2.

Proof. Recall that the control variate estimator has lower variance if and only if the
variance of the control variate is smaller than twice the covariance between the control
variate and the original estimator.

Write X = X0 ⊔ X1 such that ϕ(x) = −∞ for x ∈ X0 and ϕ(x) = a := − ln |X1| for
x ∈ X1. Then

2 Cov
(

max
x∈X

{
ϕ(x) + 1

α
γ(x)

}
,max

x∈X
{ϕ(x) + γ(x)}

)
= 2 Cov

(
max
x∈X1

{
a+ 1

α
γ(x)

}
,max

x∈X1
{a+ γ(x)}

)
= 2 1

α
var

(
max
x∈X1

γ(x)
)

= 2
α

π2

6 .

This is larger than the π2

6 variance of the control variate if and only if α < 2.



Appendix C

Differentially Private Database
Release

C.1 Proofs

Here we provide proofs for the results stated in Chapter 4, together with additional
supporting lemmas required for these proofs.

C.1.1 Synthetic Data Subspace Algorithm: Consistency

Before proving Theorem 2, we obtain a Lemma showing that the “projection error”
incurred due to projecting the KME µ̂X onto the finite-dimensional subspace HM

spanned by the synthetic data points, quantified by the RKHS distance between µ̂X

and the projection µX , converges to 0 as N →∞:

Lemma 4. Let X be a compact metric space and k : X × X → R a continuous
kernel on X . Suppose that the synthetic data points z1, z2, . . . are sampled i.i.d. from a
probability distribution q on X . If the support supp(X) of X is included in the support
of q, then

∥µX − µ̂X∥H
P→ 0 as N →∞. (C.1)

Proof. Let ε > 0. As k is continuous on X ×X , which as a product of compact spaces
is itself compact by Tychonoff’s theorem, the kernel k is uniformly continuous and in
particular there exists δ > 0 such that for all x, x′ ∈ X we have |k(x, x)−k(x, x′)| < ε2/2
whenever ∥x − x′∥X < δ. As X is compact, it is totally bounded, and thus so is its
subset supp(X). Therefore supp(X) can be covered with finitely many open balls
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B1, . . . , BK of radius δ/2. Let the sequence z1, z2, . . . be sampled i.i.d. from q, and let
EM be the event that at least ones of these K balls contains no element of z1, . . . , zM .
Since supp(X) ⊆ supp(q) by assumption, we have q(Bk) > 0 for all k = 1, . . . , K and
therefore P[EM ]→ 0 as M →∞.

Note that if all K balls contain an element of z1, . . . , zM (i.e., EC
M holds), then for

each x ∈ supp(X) one can find 1 ≤ m(x) ≤M such that ∥x− zm(x)∥ < δ/2 + δ/2 = δ.
In that case

∥µX − µ̂X∥H = inf
h∈HM

∥h− µ̂X∥H [property of projection]

≤
∥∥∥∥∥ 1
N

N∑
n=1

k(zm(xn), ·)− µ̂X

∥∥∥∥∥
H

[as 1
N

∑N
n=1 k(zm(xn), ·) ∈ HM ]

≤ 1
N

N∑
n=1

∥∥∥k(zm(xn), ·)− k(xn, ·)
∥∥∥

H
[Triangle inequality]

<
1
N

N∑
n=1

ε [see below]

= ε, (C.2)

where we have used the reproducing property, the Triangle inequality and our choices
of δ and zm(xn) to see that for all 1 ≤ n ≤ N ,

∥∥∥k(zm(xn), ·)− k(xn, ·)
∥∥∥

H

= ⟨k(zm(xn),· − k(xn, ·), k(zm(xn),· − k(xn, ·)⟩1/2
H

=
(
k(zm(xn), zm(xn))− 2k(zm(xn), xn) + k(xn, xn)

)1/2

≤
(
|k(zm(xn), zm(xn))− k(zm(xn), xn)|+ |k(xn, xn)− k(zm(xn), xn)|

)1/2

<

(
ε2

2 + ε2

2

)1/2

= ε. (C.3)

Hence we have that P [∥µX − µ̂X∥H > ε] ≤ P[EM ] → 0 as M → ∞. But since
ε > 0 was arbitrary and M →∞ as N →∞ by construction, the claimed convergence
in probability result follows from definition.

Theorem 10. Let X be a compact metric space and k : X × X → R a continuous
kernel on X . Suppose that the synthetic data points z1, z2, . . . are sampled i.i.d. from
a probability distribution q on X . If the support of X is included in the support of q,
then Algorithm 2 outputs a consistent estimator of the kernel mean embedding µX in



C.1 Proofs 147

the sense that
M∑

m=1
wmk(zm, ·) P→ µX as N →∞. (C.4)

Proof. Using the Triangle inequality, we can upper bound the RKHS distance between
the output µ̃X of Algorithm 2 and the true kernel mean embedding µX as follows:

∥µ̃X − µX∥H ≤ ∥µ̃X − µX∥H︸ ︷︷ ︸
privacy error

+ ∥µX − µ̂X∥H︸ ︷︷ ︸
projection error

+ ∥µ̂X − µX∥H︸ ︷︷ ︸
finite sample error

. (C.5)

The finite sample error tends to 0 as N →∞ by the law of large numbers, while the
projection error tends to 0 as N → ∞ by Lemma 4. For the privacy error, using
orthonormality of the basis {b1, . . . , bF} we have

∥µ̃X − µX∥
2
H =

∥∥∥∥∥∥
F∑

f=1
(βf − αf )bf

∥∥∥∥∥∥
2

H

=
F∑

f=1
(βf−αf )2 =

8 ln 1.25
δ

N2ε2 F
1
F

F∑
f=1
N (0, 1)2. (C.6)

As a function of N , the size of the basis F ∈ N is a non-decreasing function, so
it either converges to some L ∈ N, in which case the obtained expression clearly
tends to 0 as N → ∞ with probability 1, or F → ∞ as N → ∞. In this latter
case 1

F

∑F
f=1N (0, 1)2 → 1 as N → ∞ a.s. by the strong law of large numbers, and

F/N2 → 0 as N → ∞ since F ≤ M = o(N2). Hence the privacy error goes to 0 as
N →∞ either way, as required to complete the proof.

Theorem 13. Suppose that the kernel k is c0-universal Sriperumbudur et al. (2011)
and f is any continuous function mapping from X to some space Y. Let C ≥ 1 be
any finite constant. If line 8 of Algorithm 2 is replaced with a regularised reduced set
method solving the constrained minimisation problem

w = argmin
u:∥u∥1≤C

∥∥∥∥∥µ̃X −
M∑

m=1
umk(zm, ·)

∥∥∥∥∥
H
, (C.7)

then the points output by Algorithm 2 yield a consistent estimator of the kernel mean
embedding E[k(f(X), ·)] of f(X) in the sense that

M∑
m=1

wmk(f(zm), ·) P→ µf(X) as N →∞. (C.8)



148 Differentially Private Database Release

Proof. Let µout
X := ∑M

m=1 wmk(zm, ·) be the RKHS element output by Algorithm 2 after
adding the stated regularisation. First we show that despite the regularisation, µout

X

remains a consistent estimator of the true kernel mean embedding µX as N →∞.
The modification introduces an additional regularisation error term ∥µout

X − µ̃X∥H

into the upper bound on ∥µout
X − µX∥, compared to the corresponding bound (C.5) in

the proof of Theorem 10. So to show the first desired consistency result, it remains to
show that this extra regularisation error term converges to 0 in probability as N →∞.
To this end, let ε > 0 be arbitrary. Define δ > 0, the sequence z1, z2, . . . and m(x) for
x ∈ X as in the proof of Lemma 4. Note that the RKHS element 1

N

∑N
n=1 k(zm(xn), ·)

is in the feasible set of the regularised minimisation problem (C.7), because the sum of
absolute values of expansions coefficients is

M∑
m=1

∑
n:m(xn)=n

1
M

=
N∑

n=1

1
N

= 1 ≤ C. (C.9)

Therefore the regularisation error can be upper bounded as

∥µout
X − µ̃X∥H ≤

∥∥∥∥∥ 1
N

N∑
n=1

k(zm(xn), ·)− µ̃X

∥∥∥∥∥
H

[property of min]

≤ ∥µ̃X − µ̂X∥H +
∥∥∥∥∥µ̂X −

1
N

N∑
n=1

k(zm(xn), ·)
∥∥∥∥∥

H
. [Triangle inequality]

The first term goes to 0 as N →∞ by the argument given in the proof of Theorem 10.
The probability that the second term is larger than ε converges to 0 as N →∞ using
the argument given in the proof of Lemma 4. Hence we have the desired convergence
of the modified Algorithm 2’s output µout

X to the true kernel mean embedding µX as
N →∞, in probability.

This means that the modified algorithm still outputs a consistent estimator of the
kernel mean embedding of µX . Moreover, the weights in the released finite expansion
now have their L1 norm ∑M

m=1 |wm| bounded by the constant C by construction, so
Theorem 1 of Simon-Gabriel et al. (2016) applies and gives the desired conclusion
regarding consistency of the estimator for the kernel mean embedding µf(X) of f(X).

C.1.2 Synthetic Data Subspace Algorithm: Convergence Rates

Towards proving the convergence rate of Proposition 11, we will make use of the
following Lemma 5, which is a refinement of the corresponding consistency result
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of Lemma 4 above. It uses the Lipschitz assumption on the kernel to establish a
quantitative dependence between ε and δ, and the condition on q to establish a
dependence between δ, K and P[EM ].

Lemma 5. Suppose that X is a bounded subset of RD, the kernel k is Lipschitz with
some Lipschitz constant L ∈ R+, and the synthetic data points z1, z2, . . . are sampled
i.i.d. from a distribution q whose density is bounded away from 0 on any bounded subset
of RD. Then

∀γ ∈ (0, 1), a > 0 ∃C ∈ R, ε0 > 0 ∀ε ∈ (0, ε0)
M ≥ Cε−2D−a ⇒ P [∥µ̂X − µ̄X∥H ≥ ε] ≤ γ. (C.10)

Proof. Let γ ∈ (0, 1) and a > 0. Suppose for the moment that C and ε0 have already
been chosen based on X , q, γ, a and based on the Lipschitz constant L of the kernel k.
Let ε ∈ (0, ε0) and suppose that M ≥ Cε−2D−a.

Define δ = ε2

2L
and let B1, . . . , BK be a covering of supp(X) with K open balls of

radii δ
2 . By the Lipschitz property

∥x− x′∥X < δ ⇒ |k(x, x′)− k(x, x)| ≤ L∥x− x′∥X < Lδ = ε2

2 , (C.11)

and so by the argument appearing in the proof of Lemma 4, if each ball Bk contains at
least one synthetic data point zm, then ∥µ̂X − µ̄X∥H < ε. Therefore it suffices to show
that if M ≥ Cε−2D(1+a), then the probability of some of the balls not containing any
synthetic data point is at most γ.

To this end, let us look at the number of balls K, and the probability that a
synthetic data point lands in a particular ball, as functions of ε (via the ball radius
δ
2). First, since X is a bounded subset of RD, there exists C1 ∈ R such that for all
δ > 0, the space X can be covered with ⌊C1δ

−D⌋ open balls of radii δ/2. Second, since
the density of q is assumed to be bounded away from 0 on any bounded subset of RD,
there exists C2 ∈ R such that q(Bk) ≥ C2δ

D for all k.
Let AM

k be the event that the ball Bk remains without a synthetic data point after
M of them have been sampled. Then the probability of the event EM that any of the
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K balls remains empty can be upper bounded by a union bound as

P[EM ] ≤
K∑

k=1
P[AM

k ] =
K∑

k=1
(1− q(Bk))M ≤

K∑
k=1

(1− C2δ
D)M ≤ K exp

(
−MC2δ

D
)

≤ C1δ
−D exp

(
−MC2δ

D
)
. (C.12)

Solving for M , we can easily verify that P[EM ] ≤ γ is ensured whenever

M ≥ 1
C2δD

(
D ln 1

δ
+ ln C1

γ

)
= (2L)D

C2

1
ε2D

(
2 ln 1

ε
+ ln C1(2L)D

γ

)
. (C.13)

Since ln 1
ε
< 1

εa for all sufficiently small ε, we see that we could have chosen ε0 > 0
and C ∈ R such that the right-hand side is at most Cε−2D−a for all ε ∈ (0, ε0). But
the condition M ≥ Cε−2D−a is satisfied by supposition, and so we conclude that
P [∥µ̂X − µ̄X∥H] ≤ P[EM ] ≤ γ.

Proposition 11 Suppose that X is a bounded subset of RD, the kernel k is Lipschitz,
and the synthetic data points z1, z2, . . . are sampled i.i.d. from a distribution q whose
density is bounded away from 0 on any bounded subset of RD. Then M(N) can be
chosen so that Algorithm 2 outputs an estimator that converges to the true kernel
mean embedding µX in RKHS norm at a rate Op(N−1/(D+1+c)), where c is any fixed
positive number c > 0.

Proof. As in the proof of Theorem 10, we can decompose the error between the released
element µ̃X and the true µX as

∥µ̃X − µX∥H ≤ ∥µ̂X − µX∥H︸ ︷︷ ︸
finite sample error

+ ∥µX − µ̂X∥H︸ ︷︷ ︸
projection error

+ ∥µ̃X − µX∥H︸ ︷︷ ︸
privacy error

. (C.14)

Using the standard empirical kernel mean embedding estimator, the finite sample error
vanishes as Op(N−1/2) (Muandet et al., 2016). From the proof of Theorem 10 we can
see that the privacy error vanishes as Op(

√
F/N) ⊆ Op(

√
M/N). Solving for ε in the

statement of the preceding Lemma 5 we have that for all γ ∈ (0, 1), a > 0 and all
sufficiently large M ,

P
[
∥µ̂X − µ̄X∥H ≥

1
C
M− 1

2D+a

]
≤ γ. (C.15)

The projection error thus vanishes at a rate Op(M−1/(2D+a)), for any arbitrarily small
a > 0. To achieve the claimed total rate Op(N−1/(D+1+c)) we choose M(N) = Nk with
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k = 1− 4/(2D + a+ 2), and verify that

Op

(
1√
N

+M
−1

2D+a +
√
M

N

)
= Op

(
1√
N

+N
−k

2D+a +
√
Nk

N

)
= Op

(
1√
N

+N− 1
D+1+a/2

)

= Op

(
N− 1

D+1+a/2

)
, (C.16)

and the claimed result follows by taking a = 2c > 0.

Proposition 12 Suppose that a fixed proportion η of the private database can be
published without modification. Using this part of the database as the synthetic data
points, Algorithm 2 outputs a consistent estimator of µX that converges in RKHS
norm at a rate Op(N−1/2).

Proof. Let µ̂baseline := 1
M

∑M
m=1 k(zm, ·) be the baseline estimator that weights the M

public points uniformly. Noting that µ̂baseline ∈ HM lies in the span of feature maps of
synthetic data points, for the projection error as defined in equation (C.14) we have:

∥µX − µ̂X∥H ≤
∥∥∥µ̂baseline − µ̂X

∥∥∥
H

[ property of projection ]

=
∥∥∥µ̂baseline − µX

∥∥∥
H

+ ∥µ̂X − µX∥H [ Triangle inequality ]

∈ Op

(
M−1/2

)
+Op

(
N−1/2

)
. (C.17)

Using the error decomposition of equation (C.14) we thus have

∥µ̃X − µX∥H ∈ Op

(
N−1/2 + (M−1/2 +N−1/2) +

√
M/N

)
, (C.18)

and this is in Op(N−1/2) when M = ηN is proportional to N .

C.1.3 Synthetic Data Subspace Algorithm: Privacy

The proof of Proposition 10 rests on the following simple calculation:

Lemma 6. If k(x, x) ≤ 1 for all x ∈ X , then the RKHS norm sensitivity of the
empirical kernel mean embedding µ̂X with respect to changing one data point is at most
2
N

.

Proof. Let D = {x1, . . . , xN} and D′ = {x′
1, . . . , x

′
N} be two databases of the same

cardinality N , differing in a single row. Without loss of generality xn = x′
n for
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1 ≤ n ≤ N − 1. Let µ̂X and µ̂′
X be the empirical kernel mean embeddings computed

using D and D′, respectively. Then

∥µ̂X − µ̂′
X∥H =

∥∥∥∥∥ 1
N

N∑
n=1

k(xn, ·)−
1
N

N∑
n=1

k(x′
n, ·)

∥∥∥∥∥
H

= 1
N
∥k(xN , ·)− k(x′

N , ·)∥H

≤ 1
N

(∥k(xN , ·)∥H + ∥k(x′
N , ·)∥H)

= 1
N

(
k(xN , xN)1/2 + k(x′

N , x
′
N)1/2

)
≤ 2
N
. (C.19)

As D and D′ were arbitrary neighbouring databases, the claimed result follows.

Proposition 10. If k(x, x) ≤ 1 for all x ∈ X , then Algorithm 2 is (ε, δ)-differentially
private.

Proof. As the synthetic data points z1, . . . , zM do not depend on the private data, it
suffices to show that the weights w1, . . . , wM are (ε, δ)-differentially private. However,
these weights result from data-independent post-processing of the coefficients β, which
are a perturbed version of the coefficients α, with the perturbation provided by the
privacy-protecting Gaussian mechanism Dwork and Roth (2014). It remains to verify
that the Gaussian mechanism employs sufficiently scaled noise; in particular we need
to verify that 2/N ≥ ∆2 := supD,D′:D∼D′ ∥α−α′∥2.

But indeed, since b1, . . . , bF are orthonormal, for any α and α′ computed using
neighbouring databases,

∥α−α′∥2 =
 F∑

f=1
(αf − α′

f )2

1/2

=
∥∥∥µ̂N − µ̂′

N

∥∥∥
H
≤ ∥µ̂N − µ̂′

N∥H ≤
2
N
, (C.20)

(last inequality is Lemma 6) as required to verify the Gaussian mechanism. Then
(ε, δ)-differential privacy for the entire algorithm follows.

C.1.4 Random Features RKHS Algorithm: Consistency

As a preliminary lemma, we first show that a uniform convergence result for the random
features ϕ translates into a bound on the error incurred by Algorithm 3 due to using
random features instead of the original kernel k.
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Lemma 7. Let µ̂out
X := ∑M

m=1 wmk(zm, ·) ∈ H be the element in H represented by
the output of Algorithm 3. Let µ̂ϕ,out

X := ∑M
m=1 wmϕ(zm) be the corresponding element

in the random features RKHS Hϕ. If the random feature scheme ϕ is such that
supx,x′∈X |ϕ(x)Tϕ(x′)− k(x, x′)| < δ, then the following bound on the “random features
error” holds: ∣∣∣∣∥∥∥µ̂ϕ,out

X − µ̂ϕ
X

∥∥∥
Hϕ

−
∥∥∥µ̂out

X − µ̂X

∥∥∥
H

∣∣∣∣ ≤ 2
√
δ. (C.21)

Proof. Expanding the RKHS norms using bilinearity of inner products, we have∣∣∣∣∥∥∥µ̂ϕ,out
X − µ̂ϕ

X

∥∥∥
Hϕ

−
∥∥∥µ̂out

X − µ̂X

∥∥∥
H

∣∣∣∣
=
∣∣∣∣∣∣
 M∑

m1=1

M∑
m2=1

wm1wm2ϕ(zm1)Tϕ(zm2) +
N∑

n1=1

N∑
n2=1

1
N

1
N
ϕ(xn1)Tϕ(xn2)

− 2
M∑

m=1

N∑
n=1

wm
1
N
ϕ(zm)Tϕ(xn)

1/2

−

 M∑
m1=1

M∑
m2=1

wm1wm2k(zm1 , zm2)

+
N∑

n1=1

N∑
n2=1

1
N

1
N
k(xn1 , xn2)− 2

M∑
m=1

N∑
n=1

wm
1
N
k(zm, xn)

1/2∣∣∣∣∣∣. (C.22)

Since ∑M
m=1 |wm| ≤ 1 by construction and ∑N

n=1
1
N

= 1, thanks to the assumption on ϕ
this expression is of the form∣∣∣∣(a+ b+ 2c)1/2 − (A+B + 2C)1/2

∣∣∣∣, (C.23)

for suitable a,A, b, B, c, C ∈ R with |a− A|, |b− B|, |c− C| < δ. By monotonicity of
the square root function, this expression is maximised when A = a + δ, B = b + δ,
C = c+ δ. Writing s := a+ b+ 2C, we have∣∣∣∣(a+ b+ 2c)1/2 − (A+B + 2C)1/2

∣∣∣∣ ≤ |s1/2 − (s+ 4δ)1/2| = (s+ 4δ)1/2 − s1/2

≤ s1/2 + 2δ1/2 − s1/2 = 2δ1/2.

Theorem 11 Suppose that the random features ϕ converge ϕ(·)Tϕ(·) → k(·, ·)
uniformly in X as the number of random features J →∞. Assume also availability of
an approximate Reduced set construction method that solves the minimisation (4.7)
either up to a constant multiplicative error, or with an absolute error that can be made
arbitrarily small. Then Algorithm 3 outputs a consistent estimator of the kernel mean
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embedding µX in the sense that

M∑
m=1

wmk(zm, ·) P→ µX as N →∞. (C.24)

Proof. The output of Algorithm 3 specifies an element µ̂out
X := ∑M

m=1 wmk(zm, ·) ∈ H
in the RKHS H of k. Its RKHS distance to the true kernel mean embedding µX of
X can be upper bounded by a decomposition using the Triangle inequality, where we
write µ̂ϕ,out

X := ∑M
m=1 wmϕ(zm) for the element of Hϕ that the Reduced set method

constructs to approximate the privacy-protected µ̃ϕ
X :

∥∥∥µX − µ̂out
X

∥∥∥
H
≤ ∥µX − µ̂X∥H︸ ︷︷ ︸

finite sample error

+
∥∥∥µ̂X − µ̂out

X

∥∥∥
H︸ ︷︷ ︸

other errors

≤ ∥µX − µ̂X∥H︸ ︷︷ ︸
finite sample error

+
∣∣∣∣∥∥∥µ̂ϕ,out

X − µ̂ϕ
X

∥∥∥
Hϕ

−
∥∥∥µ̂N − µ̂out

X

∥∥∥
H

∣∣∣∣︸ ︷︷ ︸
random features error

+
∥∥∥µ̂ϕ,out

X − µ̂ϕ
X

∥∥∥
Hϕ︸ ︷︷ ︸

other errors

≤ ∥µX − µ̂X∥H︸ ︷︷ ︸
finite sample error

+
∣∣∣∣∥∥∥µ̂ϕ,out

X − µ̂ϕ
X

∥∥∥
Hϕ

−
∥∥∥µ̂N − µ̂out

X

∥∥∥
H

∣∣∣∣︸ ︷︷ ︸
random features error

+
∥∥∥µ̂ϕ,out

X − µ̃ϕ
X

∥∥∥
Hϕ︸ ︷︷ ︸

reduced set error

+
∥∥∥µ̃ϕ

X − µ̂
ϕ
X

∥∥∥
Hϕ︸ ︷︷ ︸

privacy error

. (C.25)

The finite sample error tends to 0 as N → ∞ in probability by consistency of the
empirical kernel mean estimate. The random features error goes to 0 as N →∞ by
Lemma 7, since J →∞ as N →∞ and ϕ(·)Tϕ(·)→ k(·, ·) uniformly in X as J →∞.
The privacy error goes to 0 as N → ∞ by the same argument as in the proof of
Theorem 10, with F replaced by J . So it remains to show that the reduced set error
also goes to 0 as N →∞, in probability.

First, note that the private empirical kernel mean embedding µ̂ϕ
X = 1

N

∑N
n=1 ϕ(xn)

is in the feasible set of the constrained minimisation problem solved by the reduced set
method, as the sum of absolute values of weights in this expansion is N | 1

N
| = 1 ≤ 1.

The RKHS Hϕ distance of µ̂ϕ
X to the optimisation target µ̃ϕ

X equals the privacy error,
so it follows that the reduced set error is upper bounded by the privacy error, and
hence also goes to 0 as N →∞:

∥∥∥µ̂ϕ,out
X − µ̃ϕ

X

∥∥∥
Hϕ︸ ︷︷ ︸

reduced set error

≤
∥∥∥µ̃ϕ

X − µ̂
ϕ
X

∥∥∥
Hϕ︸ ︷︷ ︸

privacy error

P→ 0 as N →∞, (C.26)
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as required to complete the proof.

Corollary 14. Let f be any continuous function. Then whenever k is a c0-universal
kernel, applying f to the points output by Algorithm 3 yields a consistent estimator of
the kernel mean embedding µf(X) of f(X).

Proof. Noting that the sum of absolute values of weights wm output by Algorithm 3 is at
most C by construction, in light of Theorem 11 we see that Theorem 1 of Simon-Gabriel
et al. (2016) applies and gives the desired conclusion.

C.1.5 Random Features RKHS Algorithm: Convergence Rate

Proposition 11 Suppose that ϕ is a random feature scheme for the kernel k that
converges uniformly on any compact set at a rate Op(J−1/2) with the number J of
random features. Then J(N) can be chosen such that if the employed Reduced set
method finds a global optimum of (4.7), Algorithm 3 outputs an element that converges
to the true kernel mean embedding µX at a rate Op(N−1/3).

Proof. Equation (C.25) shows that the error ∥µX − µ̂out
X ∥H between the released element

µ̂out
X and the true kernel mean embedding µX can be upper bounded by the sum of

four terms: the finite sample error, the random features error, the reduced set error,
and the privacy error. Arguing as in the proof of Proposition 11, the finite sample
error vanishes at a rate Op(N−1/2). The proof of Theorem 11 shows that the reduced
set error is upper bounded by the privacy error, which itself vanishes at a rate of
Op(
√
J/N) by the argument given in the proof of Theorem 10, with F replaced by J .

Lemma 7 implies that if the random features converge uniformly at a rate Op(J−1/2),
then the random features error vanishes at a rate Op(J−1/4). The total convergence
rate is thus

Op

(
N−1/2 +

√
J

N
+ J−1/4

)
, (C.27)

and we can check that this becomes Op(N−1/3) by setting J = ⌊N4/3⌋.

C.1.6 Random Features RKHS Algorithm: Privacy

Proposition 14 Assume that the random feature vectors produced by ϕ are bounded
by 1 in L2 norm (∥ϕ(x)∥2 ≤ 1 for all x ∈ X ). Then Algorithm 3 is (ε, δ)-differentially
private.
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Proof. The output of the algorithm is produced by a Reduced set method that is
initialised blindly to the database and optimises RKHS distance to the element µ̃ϕ

X ∈ Hϕ,
while only having access to the distance to it, rather than any representation of µ̃ϕ

X .
As µ̃ϕ

X can be seen as a vector in RJ obtained by perturbing µ̂ϕ
X using the Gaussian

mechanism with ∆2 = 2
N

, it suffices to show that the L2-sensitivity of µ̂ϕ
X is upper

bounded by 2
N

. To this end, assume D = {x1, . . . , xN} and D′ = {x′
1, . . . , x

′
N} are two

neighbouring databases of cardinality N , differing w.l.o.g. in their last element only.
Then

∥µ̂ϕ
D − µ̂

ϕ
D′∥2 =

∥∥∥∥∥∥ 1
N

N∑
n=1

ϕ(xn)− 1
N

N∑
n=1

ϕ(x′
n)
∥∥∥∥∥∥

2

= 1
N
∥ϕ(xN)− ϕ(x′

N)∥2

≤ 1
N
∥ϕ(xN)∥2 + 1

N
∥ϕ(x′

N)∥2 ≤
2
N
, (C.28)

as required to complete the proof.

C.2 Setup of Empirical Illustrations

We considered two scenarios in our basic empirical evaluations shown in Sections 4.4
and 4.5:

1. No publishable subset: No rows of the private database are, or can be made public
without some privacy-ensuring modification.

2. Publishable subset: A small part of the private database is already public, or
can be made public, perhaps for one of the several possible reasons outlined in
Section 4.1.

To illustrate the impact of data dimensionality on the performance of the proposed
algorithms, we provide results on datasets with data dimension D = 2 and D = 5.
In both cases we constructed a synthetic private dataset by sampling N = 100, 000
data points from a multivariate Gaussian mixture distribution. The mixture had 10
components, with mixing weights proportional to 1, 1

2 , . . . ,
1
10 , and the means of the

components were chosen randomly themselves from a spherical Gaussian distribution
with mean [100, . . . , 100] and covariance 200ID. Each of the N private data points
was simulated by first sampling its mixture component using the mixing weights as
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probabilities, and then the point itself was sampled from a spherical Gaussian centered
at the mean of the chosen mixture component and with covariance 30ID.

We chose to work with the widely popular exponentiated quadratic kernel k(x1, x2) =
e−γ∥x1−x2∥2

2 for RD-valued data (also known as a Gaussian kernel, or a squared ex-
ponential kernel), with the parameter setting γ = 10−4/D. This kernel is known to
be characteristic Fukumizu et al. (2008), and so as discussed in Section 4.2.2, no
information about the data generating distribution pX is lost by working with its kernel
mean embedding µX .

We used our proposed algorithms to release an approximate version of the empirical
KME of the private database, in such a way that the output satisfies the definition
of (ε, δ)-differential privacy. We investigated the common privacy levels given by
ε ∈ {0.01, 0.1, 1.0}, and used the fixed value of δ = 10−6, which satisfies the usual
requirement that δ ≪ 1

N
.

C.2.1 Evaluation Metric

The geometry of the RKHS H allows comparing the performance of different algorithms
by computing the RKHS distance ∆ between the empirical KME µ̂X computed using
all N private data points (and which could not have been released without violating
differential privacy) and the element of the RKHS represented by the actually released
weighted set of synthetic data points (z1, w1), . . . , (zM , wM):

∆ :=
∥∥∥∥∥µ̂X −

M∑
m=1

wmk(zm, ·)
∥∥∥∥∥

H
.

Moreover, as the empirical KME µ̂X is based on a large sample size of N = 100, 000
i.i.d. data points, it can be expected to be a good proxy for the true KME µX of the
data-generating random variable X. In that case ∆ is also a good proxy for the RKHS
distance between the true KME µX and the RKHS element represented by the released
dataset.

C.2.2 Scenario 1: No Publishable Subset

Algorithm 2 requires specifying the synthetic data points z1, . . . , zM in advance, before
seeing the private data. If no part of the private data has already been published (which
could then be used for the synthetic data points), one can construct the synthetic
data points by sampling them randomly from a suitable probability distribution q.
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For the consistency result of Theorem 10 to apply, the support of q must include all
possible private data points. In our case the private data takes values in RD, and so
this requirement is satisfied by any distribution on RD with full support. We used
a spherical Gaussian distribution q = N (0, σqID) with σq = 500 for sampling the
synthetic data points.

The implementation of Algorithm 3 used J = 10, 000 random features for accurate
approximation of the kernel, and an iterative gradient-based optimisation procedure to
solve the reduced set problem (Equation (4.7) in Algorithm 3).

Figure 4.2 shows how the RKHS distance ∆ changes with the number of synthetic
data points M , for different requested privacy level ε for Algorithm 2 (solid lines) and
Algorithm 3 (dashed lines), on datasets with dimensionality D = 2 (left subfigure)
and D = 5 (right subfigure). We observe that the additional ability of Algorithm 3 to
optimise the locations of the synthetic data points (rather than just the weights, as is
the case for Algorithm 2) is more helpful in the higher-dimensional case D = 5, where
the randomly sampled synthetic data points are less likely to land close to private data
points.

C.2.3 Scenario 2: Publishable Subset

Here we explored the interesting scenario where one can exploit the fact that a small
part of the private database is actually public, and use the public rows as the fixed
synthetic data points in Algorithm 2. Specifically, we assume (without loss of generality)
that the first M rows of the private database (where M ≪ N) are public, and we take
the synthetic data points to be z1 ← x1, . . . , zM ← xM .

Observe that in this case µ̂baseline := 1
M

∑M
m=1 k(zm, ·), i.e., uniform weighting of

the synthetic data points, is already expected to be a strong baseline since µ̂baseline

is itself a consistent estimator of µX , (although based on a much smaller sample size
M ≪ N). The purpose of Algorithm 2 is to find (generally non-uniform) w1, . . . , wM

that reweight the public data points using the information in the large private dataset,
but respecting differential privacy. Figure 4.1 shows how the RKHS distance ∆ changes
with the number of public data points M , for different privacy levels ε.

For comparison, the figures also show the RKHS distances ∆ achieved by the
baseline that simply weights the public points uniformly. We can see that in both cases
D = 2 and D = 5, if the ratio of public to private points is low enough, Algorithm 2
provides a substantial benefit over this baseline (note the logarithmic scaling). Since
usually obtaining permission to publish a larger subset of the private data unchanged
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will come at an increased cost, the ability to instead reweight a smaller public dataset
using Algorithm 2 in a differentially private manner is useful.





Appendix D

Program Synthesis

This Appendix contains material supplementing the content of Chapter 5, which
presented DeepCoder, an instantiation of a framework to accelerate a difficult discrete
search problem arising in program synthesis through gradient-based optimization of
neural networks on a supervised learning task.

D.1 Example Programs

This section shows example programs in our Domain Specific Language (DSL) defined
in Section 5.4.1, together with input-output examples and short illustrative descriptions
(that are not used by DeepCoder). These programs have been inspired by simple tasks
appearing on real programming competition websites, and are meant to illustrate the
expressive power of our DSL.

Program 1:
k ← int
b ← [int]
c ← Sort b
d ← Take k c
e ← Sum d

IO example:
Input:
2, [3 5 4 7 5]
Output:
[7]

Description:
A new shop near you is selling n paint-
ings. You have k < n friends and you
would like to buy each of your friends
a painting from the shop. Return the
minimal amount of money you will
need to spend.
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Program 2:
w ← [int]
t ← [int]
c ← Map (*3) w
d ← ZipWith (+) c t
e ← Maximum d

IO example:
Input:
[6 2 4 7 9],
[5 3 6 1 0]
Output:
27

Description:
In soccer leagues, match winners are
awarded 3 points, losers 0 points, and both
teams get 1 point in the case of a tie. Com-
pute the number of points awarded to the
winner of a league given two arrays w, t of
the same length, where w[i] (resp. t[i]) is
the number of times team i won (resp. tied).

Program 3:
a ← [int]
b ← [int]
c ← ZipWith (-) b a
d ← Count (>0) c

IO example:
Input:
[6 2 4 7 9],
[5 3 2 1 0]
Output:
4

Description:
Alice and Bob are comparing their results
in a recent exam. Given their marks per
question as two arrays a and b, count on
how many questions Alice got more points
than Bob.

Program 4:
h ← [int]
b ← Scanl1 Min h
c ← ZipWith (-) h b
d ← Filter (>0) c
e ← Sum d

IO example:
Input:
[8 5 7 2 5]
Output:
5

Description:
Perditia is very peculiar about her garden
and wants that the trees standing in a row
are all of non-increasing heights. Given
the tree heights in centimeters in order of
the row as an array h, compute how many
centimeters she needs to trim the trees in
total.

Program 5:
x ← [int]
y ← [int]
c ← Sort x
d ← Sort y
e ← Reverse d
f ← ZipWith (*) d e
g ← Sum f

IO example:
Input:
[7 3 8 2 5],
[2 8 9 1 3]
Output:
79

Description:
Xavier and Yasmine are laying sticks to form
non-overlapping rectangles on the ground.
They both have fixed sets of pairs of sticks
of certain lengths (represented as arrays x
and y of numbers). Xavier only lays sticks
parallel to the x axis, and Yasmine lays
sticks only parallel to y axis. Compute the
area their rectangles will cover at least.
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Program 6:
a ← [int]
b ← Reverse a
c ← ZipWith Min a b

IO example:
Input:
[3 7 5 2 8]
Output:
[3 2 5 2 3]

Description:
A sequence called Billy is looking into the
mirror, wondering how much weight it could
lose by replacing any of its elements by their
mirror images. Given a description of Billy
as an array b of length n, return an array c
of minimal sum where each element c[i] is
either b[i] or its mirror image b[n− i− 1].

Program 7:
t ← [int]
p ← [int]
c ← Map (-1) t
d ← Map (-1) p
e ← ZipWith (+) c d
f ← Minimum e

IO example:
Input:
[4 8 11 2],
[2 3 4 1]
Output:
1

Description:
Umberto has a large collection of ties and
matching pocket squares—too large, his
wife says—and he needs to sell one pair.
Given their values as arrays t and p, as-
suming that he sells the cheapest pair, and
selling costs 2, how much will he lose from
the sale?

Program 8:
s ← [int]
p ← [int]
c ← Scanl1 (+) p
d ← ZipWith (*) s c
e ← Sum d

IO example:
Input:
[4 7 2 3],
[2 1 3 1]
Output:
62

Description:
Zack always promised his n friends to
buy them candy, but never did. Now
he won the lottery and counts how of-
ten and how much candy he promised to
his friends, obtaining arrays p (number
of promises) and s (number of promised
sweets). He announces that to repay them,
he will buy s[1]+s[2]+...+s[n] pieces
of candy for the first p[1] days, then
s[2]+s[3]+...+s[n] for p[2] days, and
so on, until he has fulfilled all promises.
How much candy will he buy in total?



164 Program Synthesis

Program 9:
s ← [int]
b ← Reverse s
c ← ZipWith (-) b s
d ← Filter (>0) c
e ← Sum d

IO example:
Input:
[1 2 4 5 7]
Output:
9

Description:
Vivian loves rearranging things. Most of all,
when she sees a row of heaps, she wants to
make sure that each heap has more items than
the one to its left. She is also obsessed with
efficiency, so always moves the least possible
number of items. Her dad really dislikes if she
changes the size of heaps, so she only moves
single items between them, making sure that
the set of sizes of the heaps is the same as at
the start; they are only in a different order.
When you come in, you see heaps of sizes (of
course, sizes strictly monotonically increasing)
s[0], s[1], ... s[n]. What is the maxi-
mal number of items that Vivian could have
moved?

Figure D.1 shows the predictions made by a neural network trained on programs
of length T = 4 that were ensured to be semantically disjoint from all 9 example
programs shown in this section. For each task, the neural network was provided with 5
input-output examples.
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1: MAP (*3) a | ZIPWITH + b c | MAXIMUM d

2: ZIPWITH - b a | COUNT (>0) c

3: SCANL1 MIN a | ZIPWITH - a b | FILTER (>0) c | SUM d

4: SORT a | SORT b | REVERSE d | ZIPWITH * d e | SUM f

5: REVERSE a | ZIPWITH MIN a b

6: MAP (-1) a | MAP (-1) b | ZIPWITH + c d | MINIMUM e

7: SCANL1 + b | ZIPWITH * a c | SUM d

8: REVERSE a | ZIPWITH - b a | FILTER (>0) c | SUM d
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Fig. D.1 Predictions of a neural network on the 9 example programs described in this section.
Numbers in squares would ideally be close to 1 (function is present in the ground truth source
code), whereas all other numbers should ideally be close to 0 (function is not needed).



D.2 Experimental Results 165

D.2 Experimental Results

Results presented in Section 5.5.1 showcased the computational speedups obtained
from the LIPS framework (using DeepCoder), as opposed to solving each program
synthesis problem with only the information about global incidence of functions in
source code available. For completeness, here we show plots of raw computation times
of each search procedure to solve a given number of problems.

Figure D.2 shows the computation times of DFS, of Enumerative search with a Sort
and add scheme, of the λ2 and Sketch solvers with a Sort and add scheme, and of Beam
search, when searching for a program consistent with input-output examples generated
from P = 500 different test programs of length T = 3. As discussed in Section 5.5.1,
these test programs were ensured to be semantically disjoint from all programs used to
train the neural networks, as well as from all programs of shorter length (as discussed
in Section 5.4.2).
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Fig. D.2 Number of test problems solved versus computation time.

The “steps” in the results for Beam search are due to our search strategy, which
doubles the size of the considered beam until reaching the timeout (of 1000 seconds)
and thus steps occur whenever the search for a beam of size 2k is finished. For λ2,
we observed that no solution for a given set of allowed functions was ever found after
about 5 seconds (on the benchmark machines), but that λ2 continued to search. Hence,
we introduced a hard timeout after 6 seconds for all but the last iterations of our Sort
and add scheme.

Figure D.3 shows the computation times of DFS, Enumerative search with a Sort
and add scheme, and λ2 with a Sort and add scheme when searching for programs
consistent with input-output examples generated from P = 100 different test programs
of length T = 5. The neural network was trained on programs of length T = 4.
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D.3 The Neural Network

As briefly described in Section 5.4.3, we used the following simple feed-forward archi-
tecture encoder:

• For each input-output example in the set generated from a single ground truth
program:

– Pad arrays appearing in the inputs and in the output to a maximum length
L = 20 with a special Null value.

– Represent the type (singleton integer or integer array) of each input and
of the output using a one-hot-encoding vector. Embed each integer in the
valid integer range (−256 to 255) using a learned embedding into E = 20
dimensional space. Also learn an embedding for the padding Null value.

– Concatenate the representations of the input types, the embeddings of
integers in the inputs, the representation of the output type, and the
embeddings of integers in the output into a single (fixed-length) vector.

– Pass this vector through H = 3 hidden layers containing K = 256 sigmoid
units each.

• Pool the last hidden layer encodings of each input-output example together by
simple arithmetic averaging.

Figure D.4 shows a schematic drawing of this encoder architecture, together with
the decoder that performs independent binary classification for each function in the
DSL, indicating whether or not it appears in the ground truth source code.

While DeepCoder learns to embed integers into a E = 20 dimensional space, we
built the system up gradually, starting with a E = 2 dimensional space and only
training on programs of length T = 1. Such a small scale setting allowed easier
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Fig. D.4 Schematic representation of our feed-forward encoder, and the decoder.

investigation of the workings of the neural network, and indeed Figure D.5 below shows
a learned embedding of integers in R2. The figure demonstrates that the network has
learnt the concepts of number magnitude, sign (positive or negative) and evenness,
presumably due to Filter (>0), Filter (<0), Filter (%2==0) and Filter (%2==1)
all being among the programs on which the network was trained.

D.4 Depth-First Search

We use an optimized C++ implementation of depth-first search (DFS) to search over
programs with a given maximum length T . In depth-first search, we start by choosing
the first function (and its arguments) of a potential solution program, and then
recursively consider all ways of filling in the rest of the program (up to length T ),
before moving on to a next choice of first instruction (if a solution has not yet been
found).

A program is considered a solution if it is consistent with all M = 5 provided
input-output examples. Note that this requires evaluating all candidate programs on
the M inputs and checking the results for equality with the provided M respective
outputs. Our implementation of DFS exploits the sequential structure of programs in
our DSL by caching the results of evaluating all prefixes of the currently considered
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color intensity corresponds to the magnitude of the embedded integer.

program on the example inputs, thus allowing efficient reuse of computation between
candidate programs with common prefixes.

This allows us to explore the search space at roughly the speed of ∼ 3 × 106

programs per second.
When the search procedure extends a partial program by a new function, it has to

try the functions in the DSL in some order. At this point DFS can opt to consider
the functions as ordered by their predicted probabilities from the neural network. The
probability of a function consisting of a higher-order function and a lambda is taken to
be the minimum of the probabilities of the two constituent functions.

D.5 Training Loss Function

In Section 5.4.5 we outlined a justification for using marginal probabilities of individual
functions as a sensible intermediate representation to provide a solver employing a Sort
and add scheme (we considered Enumerative search and the Sketch solver with this
scheme). Here we provide a more detailed discussion.

Predicting program components from input-output examples can be cast as a
multilabel classification problem, where each instance (set of input-output examples) is
associated with a set of relevant labels (functions appearing in the code that generated
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the examples). We denote the number of labels (functions) by C, and note that
throughout this work C = 34.

When the task is to predict a subset of labels y ∈ {0, 1}C , different loss functions
can be employed to measure the prediction error of a classifier h(x) or ranking function
f(x). Dembczynski et al. (2010) discuss the following three loss functions:

• Hamming loss counts the number of labels that are predicted incorrectly by a
classifier h:

LH(y,h(x)) =
C∑

c=1
1{yc ̸=hc(x)}. (D.1)

• Rank loss counts the number of label pairs violating the condition that relevant
labels are ranked higher than irrelevant ones by a scoring function f :

Lr(y, f(x)) =
C∑

(i,j):yi=1,yj=0
1{fi<fj}. (D.2)

• Subset Zero-One loss indicates whether all labels have been correctly predicted
by h:

Ls(y,h(x)) = 1{y ̸=h(x)}. (D.3)

Dembczynski et al. (2010) proved that Bayes optimal decisions under the Hamming
and Rank loss functions, i.e., decisions minimizing the expected loss under these loss
functions, can be computed from marginal probabilities pc(yc|x). This suggests that:

• Multilabel classification under these two loss functions may not benefit from
considering dependencies between the labels.

• “Instead of minimizing the Rank loss directly, one can simply use any approach
for single label prediction that properly estimates the marginal probabilities.”
(Dembczyński et al., 2012)

Training the neural network with the negative cross entropy loss function as
the training objective is precisely a method for properly estimating the marginal
probabilities of labels (functions appearing in source code). It is thus a sensible step in
preparation for making predictions under a Rank loss.

It remains to discuss the relationship between the Rank loss and the actual quantity
we care about, which is the total runtime of a Sort and add search procedure. Recall
the simplifying assumption that the runtime of searching for a program of length T
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with C functions made available to the search is proportional to CT , and consider
a Sort and add search for a program of length T , where the size of the active set is
increased by 1 whenever the search fails. Starting with an active set of size 1, the total
time until a solution is found can be upper bounded by

1T + 2T + · · ·+ CT
A ≤ CT +1

A ≤ CCT
A ,

where CA is the size of the active set when the search finally succeeds (i.e., when the
active set finally contains all necessary functions for a solution to exist). Hence the
total runtime of a Sort and add search can be upper bounded by a quantity that is
proportional to CT

A .
Now fix a valid program solution P that requires CP functions, and let yP ∈ {0, 1}C

be the indicator vector of functions used by P . Let D := CA − CP be the number of
redundant operations added into the active set until all operations from P have been
added.

Example 15. Suppose the labels, as sorted by decreasing predicted marginal proba-
bilities f(x), are as follows:

1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Then the solution P contains CP = 6 functions, but the active set needs to grow to
size CA = 11 to include all of them, adding D = 5 redundant functions along the way.
Note that the rank loss of the predictions f(x) is Lr(yP , f(x)) = 2 + 5 = 7, as it double
counts the two redundant functions which are scored higher than two relevant labels.

Noting that in general Lr(yP , f(x)) ≥ D, the previous upper bound on the runtime
of Sort and add can be further upper bounded as follows:

CT
A = (CP +D)T ≤ const + const×DT ≤ const + const× Lr(yP , f(x))T .

Hence we see that for a constant value of T , this upper bound can be minimized by
optimizing the Rank loss of the predictions f(x). Note also that Lr(yP , f(x)) = 0
would imply D = 0, in which case CA = CP .
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D.6 Domain Specific Language of DeepCoder

Here we provide a description of the semantics of our DSL from Section 5.4.1, both in
English and as a Python implementation. Throughout, Null is a special value that
can be set e.g. to an integer outside the working integer range.

First-order functions:

• Head :: [int] -> int
lambda xs: xs[0] if len(xs)>0 else Null
Given an array, returns its first element (or Null if the array is empty).

• Last :: [int] -> int
lambda xs: xs[-1] if len(xs)>0 else Null
Given an array, returns its last element (or Null if the array is empty).

• Take :: int -> [int] -> int
lambda n, xs: xs[:n]
Given an integer n and array xs, returns the array truncated after the n-th
element. (If the length of xs was no larger than n in the first place, it is returned
without modification.)

• Drop :: int -> [int] -> int
lambda n, xs: xs[n:]
Given an integer n and array xs, returns the array with the first n elements
dropped. (If the length of xs was no larger than n in the first place, an empty
array is returned.)

• Access :: int -> [int] -> int
lambda n, xs: xs[n] if n>=0 and len(xs)>n else Null
Given an integer n and array xs, returns the (n+1)-st element of xs. (If the
length of xs was less than or equal to n, the value Null is returned instead.)

• Minimum :: [int] -> int
lambda xs: min(xs) if len(xs)>0 else Null
Given an array, returns its minimum (or Null if the array is empty).

• Maximum :: [int] -> int
lambda xs: max(xs) if len(xs)>0 else Null
Given an array, returns its maximum (or Null if the array is empty).
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• Reverse :: [int] -> [int]
lambda xs: list(reversed(xs))
Given an array, returns its elements in reversed order.

• Sort :: [int] -> [int]
lambda xs: sorted(xs)
Given an array, return its elements in non-decreasing order.

• Sum :: [int] -> int
lambda xs: sum(xs)
Given an array, returns the sum of its elements. (The sum of an empty array is
0.)

Higher-order functions:

• Map :: (int -> int) -> [int] -> [int]
lambda f, xs: [f(x) for x in xs]
Given a lambda function f mapping from integers to integers, and an array xs,
returns the array resulting from applying f to each element of xs.

• Filter :: (int -> bool) -> [int] -> [int]
lambda f, xs: [x for x in xs if f(x)]
Given a predicate f mapping from integers to truth values, and an array xs,
returns the elements of xs satisfying the predicate in their original order.

• Count :: (int -> bool) -> [int] -> int
lambda f, xs: len([x for x in xs if f(x)])
Given a predicate f mapping from integers to truth values, and an array xs,
returns the number of elements in xs satisfying the predicate.

• ZipWith :: (int -> int -> int) -> [int] -> [int] -> [int]
lambda f, xs, ys: [f(x, y) for (x, y) in zip(xs, ys)]
Given a lambda function f mapping integer pairs to integers, and two arrays xs
and ys, returns the array resulting from applying f to corresponding elements of
xs and ys. The length of the returned array is the minimum of the lengths of xs
and ys.

• Scanl1 :: (int -> int -> int) -> [int] -> [int]
Given a lambda function f mapping integer pairs to integers, and an array xs,
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returns an array ys of the same length as xs and with its content defined by the
recurrence ys[0] = xs[0], ys[n] = f(ys[n-1], xs[n]) for n ≥ 1.

The Int→Int lambdas (+1), (-1), (*2), (/2), (*(-1)), (**2), (*3), (/3),
(*4), (/4) provided by our DSL map integers to integers in a self-explanatory manner.
The Int→Bool lambdas (>0), (<0), (%2==0), (%2==1) respectively test positivity,
negativity, evenness and oddness of the input integer value. Finally, the Int→Int→Int
lambdas (+), (-), (*), Min, Max apply a function to a pair of integers and produce
a single integer.

As an example, consider the function Scanl1 Max, consisting of the higher-order
function Scanl1 and the Int→Int→Int lambda Max. Given an integer array a of
length L, this function computes the running maximum of the array a. Specifically, it
returns an array b of the same length L whose i-th element is the maximum of the
first i elements in a.

D.7 Analysis of Trained Neural Networks

We analyzed the performance of trained neural networks by investigating which program
instructions tend to get confused by the networks. To this end, we looked at a
generalization of confusion matrices to the multilabel classification setting: for each
attribute in a ground truth program (rows) measure how likely each other attribute
(columns) is predicted as a false positive. More formally, in this matrix the (i, j)-entry
is the average predicted probability of attribute j among test programs that do possess
attribute i and do not possess attribute j. Intuitively, the i-th row of this matrix shows
how the presence of attribute i confuses the network into incorrectly predicting each
other attribute j.

Figure D.6 shows this conditional confusion matrix for the neural network and
P = 500 program test set configuration used to obtain Table 5.1. We re-ordered the
confusion matrix to try to expose block structure in the false positive probabilities,
revealing groups of instructions that tend to be difficult to distinguish. Figure D.7 show
the conditional confusion matrix for the neural network used to obtain the table in
Figure 5.3a. While the results are somewhat noisy, we observe a few general tendencies:

• There is increased confusion amongst instructions that select out a single element
from an array: Head, Last, Access, Minimum, Maximum.
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• Some common attributes get predicted more often regardless of the ground
truth program: Filter, (>0), (<0), (%2==1), (%2==0), Min, Max, (+), (-),
ZipWith.
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Fig. D.6 Conditional confusion matrix for the neural network and test set of P = 500
programs of length T = 3 that were used to obtain the results presented in Table 5.1. Each
cell contains the average false positive probability (in larger font) and the number of test
programs from which this average was computed (smaller font, in brackets). The color
intensity of each cell’s shading corresponds to the magnitude of the average false positive
probability.
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• There are some groups of lambdas that are more difficult for the network to
distinguish within: (+) vs (-); (+1) vs (-1); (/2) vs (/3) vs (/4).

• When a program uses (**2), the network often thinks it’s using (*), presumably
because both can lead to large values in the output.
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Fig. D.7 Conditional confusion matrix for the neural network and test set of P = 500
programs of length T = 5. The presentation is the same as in Figure D.6.
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